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Introduction

Global climate change has the po-
tential to increase the frequency of eco-
system disturbances such as fire and 
drought, threatening the terrestrial eco-
logical environment and food security 
(Yuan, Wu, Hou, Xu & Lu, 2019). Most 
of the Euphrates–Tigris basin, especial-
ly in southeastern Turkey as well as in 
northern Syria and Iraq (the lower Ti-
gris basin), has a Mediterranean climate 
that is characterized by wet winters and 
dry summers (Food and Agriculture Or-
ganization of the United Nations [FAO], 
2009). Hence, the vegetation of the re-
gion is highly sensitive to climatic varia-
bility (Alhumaima & Abdullaev, 2019).

Since the 1970s, monitoring vegeta-
tion has been improved using several re-
mote sensing-based indices. The normal-
ized difference vegetation index (NDVI) 

(Tucker, 1979), specifically, is the most 
popular and has been used successfully 
to detect vegetation and climate condi-
tions interactions worldwide at various 
temporal and spatial scales (Wu et al., 
2015; Xu, Yang & Chen, 2016; Yuan et 
al., 2019; Luo, Mao, Wen & Liu, 2020). 
In the study of Luo et al. (2020), the dy-
namic characteristics of drought charac-
terized using the standardized precipita-
tion evapotranspiration index (SPEI) and 
the NDVI were investigated and evalu-
ated on an interannual scale from 1998 
to 2015. Two NDVI datasets were used 
in the work of Xu et al. (2016) to study 
vegetation growth and its response to 
climate change reflected by the precipi-
tation, minimum, maximum, and mean 
temperatures at yearly and monthly time 
scales from 1982 to 2013. Yuan et al. 
(2019) established the trend of NDVI 
vegetation change in the past three dec-
ades (1982–2013) and examined the ef-
fect of climate (monthly temperature and 
precipitation) and non-climate (popula-
tion, gross domestic product, and live-
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stock) factors on vegetation growth. Note 
that the temporal delay in the vegeta-
tion response to environmental changes 
should be considered when looking for 
the sensitivity of ecosystems to climate 
variability (Wu et al., 2015). However, 
in our recent work (Alhumaima & Ab-
dullaev, 2019), found that the maximum 
biological productivity during the grow-
ing season for Diyala river basin, a tribu-
tary of Tigris, is controlled by seasonal 
winter precipitation and January–March 
mean temperatures. Also showed that the 
neural network-based prediction of the 
spatiotemporal NDVI can be improved 
by using additional zonal landscape in-
put predictor or by constructing an indi-
vidual predicting model for each one of 
the zonal landscapes.

The two main aims of this study are 
(a) to establish the temporal vegetation 
change during the maximum biologi-
cal productivity season and (b) to ex-
plore the vegetation sensitivity to recent 
(2000–2016) climate variability. How-
ever, direct regional observations of 
precipitation and temperatures are very 
rare and sparse, i.e. they cannot provide 
the needed spatiotemporal series. A par-
ticularly attractive option is to use the 
available different climate factors from 
several global gridded datasets. In this 
work, we compared the NDVI response 
to precipitation and temperature time 
series derived from seven observational 
and reanalysis datasets. These data have 
rarely been used for the lower Tigris ba-
sin; therefore, it would be beneficial to 
assess their performance in reflecting the 
vegetation variability in the region. The 
significant differences in climatic con-
ditions of the different datasets led us, 

first, to use normalized versions of them, 
and second, to refuse the using of Köp-
pen–Trewartha bioclimatic classifica-
tion. Instead, landscapes were classified 
based on land cover/use categories and 
altitude levels. To compensate for the ab-
sence of some other factors on which the 
biological productivity of the landscapes 
depends, such as wind speed, cloudiness, 
etc., the impact of global weather-form-
ing factors, expressed in global circula-
tion indices, has been assessed also.

Materials and methods

Study area

The study area of approx. 251,400 km2 
(41°05′–48°07′E and 38°38′–48°07′N) 
illustrated in Figure 1; is distributed 
mainly between Iraq, Iran and Turkey 
and includes the basins of the five ma-
jor tributaries of Tigris: Fesh Khabour, 
Greater Zab, Lesser Zab, Al-Adhaim and 
Diyala. The region has diverse landforms 
(Fig. 1b) and land cover patterns (Fig. 1c) 
that are expected to be very sensitive to 
climate variability. From the total study 
area, 22% are plains with heights of up to 
300 m, 32% are foothills with elevations 
from 300 to 900 m and the remaining 
46% are mountainous regions. From the 
land cover map, 47% of the study area 
is occupied by natural vegetation (NV: 
grasslands, trees, shrubs, and herbaceous 
vegetation), 33% is attributed to agricul-
tural croplands which are classified into 
agricultural rainfed lands (AR: 25%) and 
agricultural irrigated lands (AI: 8%), and 
low vegetation lands (LV: sparse vegeta-
tion, barren, water bodies and urban).
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Datasets
Ten gridded datasets were used in this 

study. The MODIS 16-day NDVI maps 
of 250 × 250 m spatial resolution and 16 
days temporal resolution (MOD13Q1) 
(Didan, 2015) for March and April grow-
ing months were directly downloaded 
from NASA’s Earth Observing System. 
In addition, we used the ASTER GDEM 
version 2 (Ministry of Economy, Trade 
and Industry of Japan / United States 
National Aeronautics and Space Admin-
istration [METI/NASA], 2011) and FAO 
Global Land Cover-SHARE version 
2014 (Latham, Cumani, Rosati & Bloise, 
2014) datasets to delineate the different 
terrains and land cover types, and thus 
construct study area landscapes.

The monthly precipitation and tem-
perature data used over the period 1981–
–2016 were obtained from two obser-
vational and five atmospheric rean-
alysis datasets: CRU-TS4.01 (Harris, 
Jones, Osborn, & Lister, 2014), UD-
V5.01 (Willmott & Matsuura, 2019), 
ERA-Interim (Dee et al., 2011), Mod-
ern-Era Reanalysis 2 (Gelaro et al., 
2017), NСEP-DOE AMIP-II Reanalysis 

(Kanamitsu et al., 2002), JRA-55 (Koba-
yashi et al., 2015) and NСEP-CFSR 
(Saha et al., 2014), hereafter CRU, UD, 
ERA, MERRA, NCEP, JRA and CFSR, 
respectively.

In addition, non-gridded datasets 
of global circulation indices: El-Nińo-
-Southern Oscillation (ENSO), Atlantic 
Multidecadal Oscillation (AMO), North 
Atlantic Oscillation (NAO) and Dipole 
Mode Index (DMI), obtained from the 
National Oceanic and Atmospheric Ad-
ministration (NOAA), were also used in 
this study.

Study area landscapes
From the above description, the 

study area has diverse ecosystems and 
land cover categories, and one could 
easily expect that their vegetation sen-
sitivity to climate will be different. For 
this reason and in order to examine the 
effect of climate variability on the differ-
ent NDVI landscapes, we classified our 
study area into 10 smaller landscapes 
(Fig. 2a): plains with NV, AR, AI and LV 
(PNV, PAR, PAI and PLV, respectively), 
foothills with NV, AR and LV (FNV, 

FIGURE 1. Study area (a) with elevation levels (b) and land cover map (c)
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FAR and FLV, respectively), and finally 
mountains with NV, AR and LV (MNV, 
MAR and MLV, respectively). The mean 
altitude and area percentage of each in-
dividual landscape are illustrated in Fig-
ures 2b and 2c. Note that, in our analysis, 
LV landscapes, urban, and water areas 
were not considered.

Methods

NDVI data processing

The maximum value compositing 
(MVC) method was used to produce 
monthly NDVI maps and minimize the 
effects of atmospheric, cloud contamina-
tion, and solar zenith angle (Alhumaima 
& Abdullaev, 2019). Additionally, NDVI 
pixels less than 0.1 were excluded from 
the analysis and considered as non-veg-

etated (Xu et al., 2016; Alhumaima & 
Abdullaev, 2019).

Standardized precipitation index 
and z-score

To minimize the significant variance 
in the original amplitudes of the climate 
factors between the different datasets, 
only normalized time series of monthly 

precipitation and temperatures have been 
used in this study. Therefore, we con-
structed for each individual landscape, 
seven pairs (based on the seven climate 
datasets) of 35-years (1981–2016) based 
time series of six-months (October–
–March) the standardized precipitation 
index (SPI) (Mckee, Doesken, & Kleist, 
1993; Alhumaima & Abdullaev, 2018) and 
three-months (January–March) tempera-
ture z-score (Alhumaima & Abdullaev, 
2018; Li, Li, Lu, Zhang & Kim, 2019).

FIGURE 2. Study area landscapes (a) with their mean altitudes (b) and area percentages (c)
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Pearson correlation analysis
Since the indices time series for the 

NDVI, global circulations, precipitation 
and temperatures meet the basic assump-
tions of parametric linear analysis, we 
decided to use the Pearson correlation 
coefficient (PCC) (Luo et al., 2020) to 
give a clear picture of the strength of the 
relationships among them. The prelimi-
nary correlation analysis showed that 
the NDVI vegetation of both March and 
April, averaged over the entire region, 
have the highest correlation (0.5 ≤ PCC 
< 0.8) to the same cumulative amounts 
of October–March period total precipi-
tation and January–March period mean 
temperatures according to the seven cli-
mate datasets. Similarly, the coefficients 
of determination (Kamble, Kilic & Hub-

bard, 2013), denoted R2, were to meas-
ure the proportion of variability in the 
landscapes’ NDVI that can be explained 
by the other independent variables in the 
linear regression model.

Results and discussion

Landscapes’ NDVI change
The NDVI time series for six region-

al landscapes during March and April 
growing months are illustrated in Fig-
ure 3. These time series are not regular 
over the study period with the presence 
of almost significant lack in vegetation 
during 2000, 2006, 2008, 2009, 2011 
and 2012. In fact, many previous studies 
reported that the Euphrates–Tigris basin 

FIGURE 3. March and April mean NDVI of PAR and PAI (a and b), FNV and FAR (c and d), and MNV 
and MAR (e and f), respectively
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experienced significant drought events 
during these years (Alhumaima & Ab-
dullaev, 2018; Mathbout, Lopez-Bustins, 
Martin-Vide, Bech & Rodrigo, 2018). At 
the same time, the moderate–high cor-
relations between March NDVI time se-
ries of all regional landscapes with each 
other (0.5 ≤ PCC < 1), confirm the effect 
of drought on all landscapes simultane-
ously. The correlations between land-
scapes’ March NDVI and those of April 
were moderate to high (0.5 ≤ PCC < 1) 
also. On the other hand, these correla-
tions indicate different responses from 
different landscape types.

The NDVI change in the agricultural 
rainfed landscapes (PAR for example, 
Fig. 3a) during both March and April 
were more prominent and less stable 
(std = 0.103 and 0.066) compared to that 
of the agricultural irrigated landscape 
(PAI, Fig. 3b) which was more stable but 
also observable (std = 0.062 and 0.032, 
respectively). This indicates that the cro-
plands are also affected by climatic vari-
ability, but human management, such 
as; irrigation could mitigate the negative 
effects.

Landscapes sensitivity to climate
The 35-years based mean monthly 

precipitations averaged over the whole 
study area (Fig. 4a) show that UD, ERA, 
JRA, and CFSR, with annual precipita-
tions of 451, 462, 620 and 470 mm, were 
wetter than CRU, MERRA and NCEP 
of 375, 257 and 395 mm, respectively. 
At the same time and with respect to 
the temperatures (Fig. 4b), the mean 
annual values were ranged between 
17.8 and 18.4°C, except for NCEP and 
JRA datasets of only 12.8 and 14.3°C, 
respectively.

Several studies showed that signifi-
cant differences exist in precipitation 
estimates between the different datasets 
and their performance may vary depend-
ing on the geographic location and cli-
matic zone (Essou, Sabarly, Lucas-Pith-
er, Brisette & Poulin, 2016; Chen, Gan, 
Tan, Shao & Zhu, 2019). We demonstrat-
ed in Alhumaima and Abdullaev (2018) 
that despite their relative simplicity, the 
SPI and z-score are good indicators of 
regional drought/wet and cold/warm 
cases, respectively. The 17 out of the 
35-years based z-score time series of 
January–March period temperatures 
(ZJM) calculated over three of the re-
gional landscapes and analogous six-
month SPI time series of October–March 
period precipitation (SPIOM) are shown 
in Figures 4c, 4d, 4e, 4f, 4g and 4h.

However, we examined the correla-
tions between NDVI in March and April 
of each individual landscape and the cor-
responding normalized climate factors 
and found that there are large variances in 
these relationships (0.17 ≤ PCC < 0.91) 
depending on dataset used and landscape 
type. For example, March NDVI in of the 
foothills’ natural vegetation landscape 
(FNV, Fig. 3e) has weak correlations 
(PCC < 0.5) with SPIOM according to 
UD and JRA datasets, moderate correla-
tions (0.5 ≤ PCC < 0.75) according to 
CRU, ERA, NCEP and CFSR datasets, 
and high correlation (PCC ≥ 0.75) ac-
cording to MERRA dataset. The correla-
tions between March NDVI of the same 
landscape and ZJM were moderate (high) 
according to CRU, UD, ERA, MERRA, 
NCEP and CFSR (JRA).

To estimate how much March NDVI 
variability is associated with both SPIOM 
and ZJM according to the seven datasets, 
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we calculated the coefficients of deter-
mination (R2). The R2 values, presented 
in the table, are directly interpreted as 
follows. If the value of R2 is 0.40, as in 
the case of PNV landscape (depending 
on SPIOM and ZJM of JRA reanalysis), 
this means that 40% of the original vari-
ability of NDVI can be explained by the 
corresponding hydrothermal regime, 

and 60% of residual variability remains 
unexplained.

The table indicates that the vari-
ability of landscapes’ NDVI, explained 
using two normalized climatic factors 
of the same dataset, is varied between 
28 and 83% depending on the dataset 
used. However, using the time series of 
ERA and CFSR, we can explain from 

FIGURE 4. Study area mean annual precipitations and temperatures (a and b); normalized monthly 
precipitations and temperatures of PAR, FNV and MNV landscapes (c-d, e-f and g-h), respectively, 
according to seven datasets



166 A.S. Alhumaima, S.M. Abdullaev

77 to 83% of NDVI variability on low-
land plains’ landscapes and from 63 to 
75% on higher landscapes. The MERRA 
dataset is poorest to describe the vari-
ability of the semi-desert plains’ vegeta-
tion (28–45%) but it is the best predictor 
for foothills’ and mountains’ vegetation 
(77–80%). Thus, the consideration of the 
combined effects of normalized seasonal 
precipitation and temperature exposure 
to vegetation explains much of NDVI 
variability, regardless of geographic lo-
cation and land cover type.

To obtain better predictions, we cal-
culated R2 for each individual landscape 
based on all possible combinations of 
SPIOM and ZJM time series from the 
different datasets. The results (the table) 
showed that the explanation of NDVI 
variability of four out of the five land-
scapes, located in plains and foothills 
(PNV, PAR, PAI and FNV), optimized 
by 2.4–3.5% using ZJM time series of 
CFSR and UD datasets, while the com-
bination of SPIOM and ZJM time series 
of CFSR and MERRA datasets, respec-
tively, to explain NDVI variability of 
the FAR landscape has increased R2 by 
7.2%. This clearly indicates that better 

predictions of vegetation variability can 
be obtained when relying on more than 
one dataset simultaneously.

From the above analysis, vegeta-
tion of the region is highly dependent 
on climate. Therefore, it makes sense to 
link factors that affect the regional cli-
mate with the vegetation. On the other 
hand, these factors could compensate for 
the absence of other factors like wind 
speed, total cloud cover, evaporation, 
soil moisture and many others that have 
an effect on plant growth. However, in 
this work, we decided to verify from the 
states of ENSO, AMO, NAO and DMI as 
it has been found in several studies (Cul-
len, Kaplan, Arkin & de Menocal, 2002; 
Karabörk & Kahya, 2009; Khidher & 
Pilesjö, 2015; Pourasghar, Oliver & Hol-
brook, 2019) that they have a significant 
influence on climate and rivers’ stream-
flow in the surrounding areas.

The analysis showed that the study 
area’s averaged SPIOM according to all 
datasets are moderately correlated (0.55 
≤ PCC ≤ 0.7) to both: SON, OND, NDJ 
and DJF states of ENSO and Decem-
ber state of DMI, while the correlations 
were weak with both NAO and AMO. 

TABLE. Relative part of landscapes’ NDVI variability described by variations of normalized seasonal 
precipitation and temperatures

LS
Resulted R2 values based on SPIOM/ZJM of the same 

dataset Using mixed datasets

CRU UD ERA MERRA NCEP JRA CFSR SPIOM/ZJM R2

PNV 0.48 0.62 0.80 0.45 0.48 0.40 0.69 ERA/CFSR 0.82
PAR 0.55 0.65 0.74 0.52 0.69 0.49 0.77 CFSR/UD 0.79
PAI 0.40 0.46 0.83 0.28 0.53 0.34 0.77 ERA/UD 0.86
FNV 0.54 0.56 0.65 0.78 0.61 0.61 0.72 MERRA/UD 0.80
FAR 0.61 0.71 0.71 0.77 0.72 0.67 0.75 CFSR/MERRA 0.83
MNV 0.54 0.58 0.63 0.78 0.61 0.69 0.69 MERRA 0.78
MAR 0.63 0.61 0.68 0.80 0.65 0.71 0.72 MERRA 0.80
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We found that the ZJM temperatures are 
moderately correlated (0.5 ≤ PCC ≤ 0.6) 
to SON state of AMO, while the correla-
tions were weak with other indices.

As expected, the correlation analysis 
between March NDVI and the four glo-
bal circulation indices showed that the 
most positive responses of landscapes 
were also to the SON-DJF states of 
ENSO (0.55 ≤ PCC ≤ 0.70) and Decem-
ber state of DMI (0.37 ≤ PCC ≤ 0.72). 
With respect to the SON state of AMO 
and NAO, the responses of all landscapes 
were weakly positive (0.17 ≤ PCC ≤ 
0.36) and weakly negative (–0.34 ≤ PCC 
≤ –0.1), respectively. For the correlations 
with the next April, almost the same de-
scription above has noted but with less 
sensitivity compared to March.

As with the NDVI, SPIOM and ZJM, 
we calculated the coefficients of deter-
mination based on all possible combi-
nations of the four circulation indices 
in order to find out the best predictors 
for each of the regional landscapes. The 
analysis showed that using the combined 
effect of three sets of circulation indices 
(ENSO, AMO and NAO; ENSO, DMI and 
NAO; ENSO, DMI and AMO) we can 
explain 30–55, 70–78, and 60–64% of 
landscapes’ NDVI variability on plains, 
foothills, and mountains, respectively.

Thus, it can be concluded from the 
results that the consideration of the com-
bined effects of the global circulation in-
dices and climate factors can enhance the 
explanation of vegetation variation. To 
prove this, we recalculated R2 based on 
five input predictors consisting of land-
scapes’ best combinations of normalized 
climate factors (the table) and climate 
indices, and found that the relative ex-
planations of NDVI variability for all 

landscapes have increased by 4.5–9.5% 
compared to the values presented in the 
table. Here, R2 of: plains’ landscapes 
(PNV, PAR and PAI) have increased to 
be 86, 84 and 93% with increasing rates 
of 4.7, 6.0 and 7.5%, foothills’ land-
scapes (FNV, FAR) have increased to 
be 88 and 89% with increasing rates of 
9.1 and 6.7%, and finally, mountainous 
landscapes (MNV, MAR) have increased 
to be 86 and 88% with increasing rates of 
9.3 and 9.1%, respectively.

Conclusions

In this work, the study area of the 
lower Tigris basin was classified based 
on the landforms (plains, foothills, and 
mountains) and land cover patterns (nat-
ural vegetation, agricultural rainfed, and 
agricultural irrigated) into 10 smaller 
natural and agricultural landscapes. The 
variation of remote sensing MODIS 
NDVI data was then examined during 
the maximum biological productivity 
season (March and April) as a response 
to the current regional and global climate 
variability. These latter are reflected by 
monthly precipitation and temperature 
time series derived from two observa-
tional and five reanalysis climate data-
sets (CRU, UD, ERA, MERRA, NCEP, 
JRA and CFSR) and four circulation in-
dices (ENSO, АМО, NAO and DMI). The 
preliminary analysis showed the NDVI 
of both March and April are strongly 
correlated with the cumulative win-
ter precipitation (October–March) and 
mean temperatures of January–March 
period. The significant differences in 
precipitation and temperature estimates 
between the different datasets led us to 
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use normalized versions of the climate 
factors (SPI and z-score) in searching 
for the landscapes’ vegetation response 
to climate variability. The multiple cor-
relation analysis showed that combining 
the normalized seasonal climate factors 
from different datasets can explain much 
of the landscapes’ NDVI variability re-
gardless of the geographic location and 
land cover category. It is also found that 
the predictability of landscapes’ vegeta-
tion conditions can be enhanced by com-
bining climate factors with global circu-
lation indices that are found to influence 
the regional climate as well.
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Summary

The sensitivity of vegetation in the 
lower Tigris basin landscapes to regional 
and global climate variability. This study 
investigates the lower Tigris basin’s the nor-
malized difference vegetation index (NDVI) 
sensitivity in 2000–2016 to regional climate 
variability reflected by the monthly precipi-
tation and temperature time series of seven 
global datasets as well as to four global cir-
culation indices. To examine the effect of 
climate variability on the different ecosys-
tems, the study area has been classified into 
10 smaller natural and anthropogenic land-
scapes based on landforms and land cover 
patterns. The preliminary analysis showed 
that the maximum biological productivity re-
flected by the NDVI of March and April has 
the highest correlation (0.5–0.8) to the same 
cumulative amounts of October–March pe-
riod total precipitation and January–March 
period mean temperatures according to all 
datasets. In addition, this article showed 
there is a correlation between landscapes’ 
NDVI and global modulation represented by 

the September–February state of El Nińo-
-Southern Oscillation (ENSO) (0.55–0.70) 
and December state of the dipole mode in-
dex (DMI) (0.35–0.72). The significant dif-
ferences in the original precipitation and 
temperature levels according to the differ-
ent datasets have urged the use of normal-
ized time series: z-score of temperatures and 
analogous six-months the standardized pre-
cipitation index (SPI). However, the multiple 
correlation analysis showed that using ERA-
-Interim and NСEP-CFSR (MERRA-2) 
based climate factors can explain from 77 
to 83% of the NDVI variability on lowland 
plains (on higher foothills and mountainous 
lands). We found also that these prediction 
percentages can be increased by 2.4–7.2% 
when using time series of precipitation and 
temperatures derived from different data-
sets, in addition to 4.5–9.5% increasing rates 
when using the global circulation indices as 
additional predictors.
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