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Introduction

Concrete is a material conventionally used for construction that is of major
importance in the field of civil engineering. Mastering concrete structural design
involves full control of the finite element analysis, which required using an appro-
priate numerical constitutive law to describe the real behavior of the concrete mate-
rial. Several numerical constitutive laws were provided in the last few decades in
order to describe the behavior of concrete. The linear and nonlinear elastic models
are the simplest constitutive laws for describing the behavior of concrete. This
category of models presumes a linear/nonlinear relationship between the stresses
and the strains for the tension and the compression cases, the correlation between
stresses and strains is governed by Hooke’s law for the linear case, what is more,
this category of models is characterized by elastically returning to the “unloaded”
state after loading. This kind of model is quite accurate and sufficient to forecast
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the behavior of concrete for minor strain values, but it shows an important error
margin when the strain values are significant. To overcome this issue a second cat-
egory of models was developed using the plasticity theory in order to improve the
accuracy of the outcomes for significant strain values. For the plasticity models,
various constitutive laws were developed specifically for concrete, such as Ottosen
(1977), and Menetrey and Willam (1995), where multiple modifications into the
plasticity theory were provided in order to compute the strain and the stress. In
addition, Han and Chen (1986), Dvorkin, Cuitino and Gioia (1989) advised using
the Drucker and Prager’s yield function as a potential function to estimate the
plastic strain, in the same manner, Vermeer and De Borst (1984) employed the
constitutive equation of Mohr and Coulomb to provide a new potential function,
in which substituting the internal friction angle with the dilatancy angle was sug-
gested. The category of plasticity models can perfectly address small and large
strains, but, unfortunately, this category of models cannot handle the concrete deg-
radation which provides a large margin of error specifically after the peak point;
furthermore, the concrete behavior is not the same for tension and compression
cases. As recapitulation, the use of plasticity models to presume the behavior of
concrete structures provides inaccurate outcomes, especially after the peak point.
Several papers (Lubliner, Oliver, Oller & Onate, 1989; Paliwal, Hammi, Moser
& Horstemeyer, 2017; Poliotti & Bairdn, 2019; Bhartiya, Sahoo & Verma, 2021;
Xiao, Chen, Zhou, Leng & Xia, 2021; Liu, Zhang, Zhao, Wu & Guo, 2022; Lu,
Meng, Zhou, Wang & Du, 2022) combine the damage of concrete with the plastic-
ity theory to provide yet another category of models referred to as plastic damage
models. One of the most innovative models in this category was developed by
Lubliner et al. (1989) called the damage plastic model (DPM) also known as the
Barcelona model. This model was upgraded by Lee and Fenves (1998) to address
the cyclic loading. The recent form of this model was used by Javanmardi and
Maheri (2019) to predict the crack propagation paths. Furthermore, Ahmed, Voy-
iadjis and Park (2020) suggested a new finite element implementation of this model
through a novel stress decomposition. The new form of this model (Lee & Fenves,
1998) was implemented in the commercial finite element code ABAQUS under the
name of concrete damaged plasticity model (CDPM). The CDPM has been widely
used in various research papers, such as the work of Silva, Gamage and Fawzia
(2019) where they used it to simulate the concrete damage. Likewise, Ren, Sneed,
Yang and He (2015) used CDPM in the numerical simulation of prestressed pre-
cast concrete bridge deck panels. In addition, Othman and Marzouk (2018) used
the CDPM to simulate ultra-high-performance fiber reinforced concrete material
under impact loading rates at different damage stages. In the same manner, Meng,
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Yang and Yang (2022) used ABAQUS to evaluate the damage evolution of double-
-tube concrete column under axial force.

Various parameters are required to simulate the behavior of concrete using CDPM;
the stress—inelastic strain diagram for compression and tension cases, the damage
parameters evolution for compression and tension cases, the ratio of the second
stress invariants on tensile and compressive meridians, the eccentricity, the ratio of
biaxial compressive yield stress to uniaxial compressive yield stress, and the dilation
angle. Minh, Khatir, Wahab and Cuong-Le (2021) suggested multiple enhancements
of CDPM in order to eliminate several parameters where the softening phase in the
compressive stress—strain curve has been modified and each of the tensile damage
variables and the compressive damage variables was evaluated through an exponen-
tial function. To avoid those parameters, a local computer program was developed
by the author called Concrete v. 2.0, where only the concrete strength is required for
modeling concrete structures (Bakhti, Benahmed, Laib & Alfach, 2022).

This work examined the effect of the hardening function used in the finite ele-
ment implementation of DPM on the final outcomes by comparing the generated
stress—strain diagrams with the analytical solutions of Lubliner and also with other
formulas suggested, respectively, by Desayi and Krishnan (1964) and Krétzig and
Polling (2004) for the compression case, and Thorenfeldt (1987) for the tension
case. The outcomes of the Barcelona model presented in this paper are calculated
by Concrete v. 2.0 using the methodology proposed in Bakhti et al. (2022), where
the Lubliner’s formulas (Lubliner et al., 1989) have been selected as a hardening
function in the finite element implementation of DPM. For the compression case,
this paper compared the stress—strain diagrams generated according to the Barcelona
model with the stress—strain diagrams of Desayi and Krishnan (1964), Lubliner et al.
(1989), and Kritzig and Polling (2004). For the tension case, the stress—strain curves
were compared with the stress—strain curves of Thorenfeldt et al. (1987) and Lub-
liner et al. (1989). This study helped select five values of concrete strengths, namely:
20 MPa, 25 MPa, 30 MPa, 35 MPa and 40 MPa.

Plastic damage model for concrete

The main concept of DPM is to substitute the hardening variable in the overall
form of classical plasticity with the plastic damage variable. The value of the damage
variable varies between zero and one, where the zero value represents the undam-
aged concrete and the value of one represents the totally damaged concrete with
a full loss of cohesion. The fundamental equations of this model are as follows.
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a) For the yield function

F:ﬁ(gxap+\/§J+'B<O-max>_7/<_o-max>)_c’ (1)

with a, £ and y are dimensionless parameters given by:

e
_ Jc0
a= o) 2
Jc0
B = R(1-a) - (1+a) with R =j%g, (3)
t
y=30-r 2 -, 4)

where: p — mean total stress, J — deviatoric stress, o,,,x — maximum principal effective
f
stress, ¢ — cohesion, % —ratio of biaxial and uniaxial compressive yield strengths.
c0
In SIMULIA (2010), the default value is 1.16, f;, — initial uniaxial tensile yield stress,

»MaX — constant takes a value of 0.65, according to Oller, Onate, Oliver and Lubliner

oct
(1990), <X> — Macaulay’s bracket and takes the form: (+.x) = X J_;‘X‘

b) For the potential function

Lubliner et al. (1989) suggested a non-associated potential plastic flow. The
potential function takes the same form as the classic Mohr—Coulomb constitutive
equation with replacing the friction angle with the dilation angle. The potential func-
tion suggested by Lubliner et al. (1989) takes the following form:

sin@siny

G=psinly/ + J(cosd— T), (5)
where: p — mean total stress, i — dilation angle, J — deviatoric stress, # — lode angle.

The second form of this model was developed by Lee and Fenves (1998) to
address the dynamic loading where the following modifications were proposed, as
follows.
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a) For the yield function substituting cohesion ¢ by effective compressive cohesion
stress o, or new formulas for 4 and y parameters, given as:

p=5 (1ma)=(1+a), (©)

where: o, — effective compressive cohesion stress, o; — effective tensile cohesion

stress, K. — ratio of second stress invariants on tensile and compressive meridians.

As a result, the second form of the yield function suggested by Lee and Fenves
(1998) is written as:

F= ﬁ(%‘ p+\/§J+ﬁ<Gmax>_7<_‘7max>) —oc; (®)

yd E(MPa) (26000 f FbO/FcO 116 |K 0.67 9;;
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FIGURE 1. Modeling cubical concrete sample using Concrete v.2.0 (dimensions: 300 x 300 x
% 300 mm)

Source: own work.
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b) For the potential function, suggested by Lee and Fenves (1998), takes the form:

G= \/(goto tam,//)2+3J2 + ptany, 9)

where: ¢ — flow potential eccentricity — 0.1 in SIMULIA (2010), o4 — uniaxial tensile
stress at failure.

Bakhti et al. (2022) developed a finite element program under the name Concrete
v. 2.0 to model concrete behavior using DPM as a constitutive model and object-
oriented programming paradigm (OOP) as a coding technique. All DPM curves pre-
sented in this paper were calculated by Concrete v. 2.0 for a cubical element with
dimensions: 300 x 300 x 300 mm and by hiring the 8 nodes cubical element to gen-
erate 27 elements (Fig. 1).

Stress—strain correlations

Lubliner’s stress—strain correlation

In 1989, Lubliner et al. (1989) suggested general correlations between the com-
pressive and tensile stresses and the inelastic strain. Those correlations are used by
Bakhti et al. (2022) as a hardening function in the finite implementation of DPM.
According to the suggested correlations, the compressive and tensile stresses depend
on the values of the coefficients a., a;, b. and b,. The values of these coefficients
were evaluated by Bakhti et al. (2022) according to the CEB-FIP Model Code rec-
ommendations (Comité euro-international du béton & Fédération internationale du
béton [CEB-FIP], 2010) and presented in Tables 1 and 2. The stress—strain correla-
tions suggested by Lubliner for tension and compression take the following forms:

in in
O'C:fc()|:(1+ac)e_bcgc —ace_Zbcgc }

ck ck | - (10)
o-t=f}0{(l+at)e_bfgt —ate_zbfgf }

For the stress—strain correlations, Bakhti et al. (2022) divided these curves into
two parts for the compression and tension cases as shown in Figure 2. The first part
represents the linear segment where the stress is evaluated according to Hooke’s law.
The second one represents the non-linear part where the stress is evaluated according
to Lubliner’s formulas.
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TABLE 1. Values of coefficients a., a;, b. and b, for different concrete strength — Part 1

. Jek [MPa]
Coefficient 12 16 20 25 30 35 40
2 7.873 7.873 7873 7.873 7.873 7.873 7.873
a 637.077 | 636468 | 638065 | 641.894 | 646.876 | 652439 | 658218
b, 1.00 1.00 1.00 1.00 1.00 1.00 1.00
b, 6122778 | 6059292 | 6107316 | 6240.193 | 6412.655 | 6604052 | 6803.804

Source: own work.

TABLE 2. Values of coefficients a., a,, b. and b, for different concrete strength — Part 2

. Jek [MPa]
ffi
Coefficient 45 50 55 60 70 80 90
a, 7.873 7.873 7.873 7.873 7.873 7.873 7.873
a; 663.972 669.533 674.783 679.639 687.945 698.146 794.836
b. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
b, 7005913 7206.661 7403.612 7 595.106 7 957.263 8334.567 9769.134
Source: own work.
a b
o, Ot
c| 2 1 2

o Jim [y

fc 0 | /

£
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FIGURE 2. Decomposition of stress—strain curve in compression (a) and tension (b)

Source: own work.

Desayi and Krishnan’s correlation

Using a series of experimental tests, several researches attempted to provide cor-
relations between the stress and strain for both cases of compression and tension
where the experimental outcomes are used to develop functions that can describe the
material behavior. The simplest relationship was developed by Desayi and Krishnan
(1964) that takes the following form:

B E¢
1452 (11

€p
where: o, ¢ — stress and strain tensors, £ — Young’s modulus, ¢, — strain at peak stress.

o
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Kriitzig and Polling’s correlation oo [T 2 3
Jem

This approach was adopted in the
multiple research work to evaluate the
compressive stress—strain diagrams. For Jeo
instance, Alfarah, Lopez-Almansa and
Oller (2017) used the correlations of
Kratzig and Polling (2004) in their algo-
rithm to auto-evaluate the stress—strain
diagrams in ABAQUS. In this approach,
the stress—strain curve is divided into
three parts as shown in Figure 3, where

c

FIGURE 3. Kritzig’s decomposition of the

the stress values are evaluated by: compressive stress—strain curve
— first part (linear till £,): Source: own work.
o) = Eote (12)

— second part (ascending between £ and f.,,):

£ & 2
Eci— (%)

00(2) = Jem EC’jl fcm’ (13)
-2

[t
Jem

Eem

— third part (descending), given by:

-1

2 2, /
o _ 247 femEem },ch+5070 with . = " feméem b= 55 ,

c(3 2fem Eem ¢ 2 e

2 %_0 5 1-b beim ¢

. fcm("?cm( )‘*‘ )
Leq Ey

(14)

where: f.() — compressive stress that correspond to zero crushing, f;,,, — peak compres-
sive stress, €., — strain at the peak compressive stress, £y — undamaged modulus of
deformation, E,; — initial tangent modulus of deformation of concrete, G, — crush-

ing energy per unit area, L., — mesh size (characteristic length), gf L compressive

plastic strain, gé" — compressive inelastic strain.
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Thorenfeldt’s correlation

According to the Thorenfeldt’s approach (Thorenfeldt, 1987), the tensile stress—
strain curve can be divided into two parts. In the first part (till the peak point), the
stress value is evaluated according to the Hooke’s law. In the second part, the tensile
stress is calculated in accordance with the following formula:

(0.7+1,000¢; )
J : (15)

&
Gt:'tm( o
&t

where: f,,, — peak tensile stress, ¢, — strain at the peak tensile stress.

Comparing the stress—strain curves of the barcelona model
and several analytical correlations

Five values of concrete strengths are chosen to examine the outcomes of the Bar-
celona model compared to three stress—strain correlations for the compression case,
namely: Desayi and Krishnan (1964), Lubliner et al. (1989), and Kritzig and Polling
(2004), and two stress—strain correlations for the tension case, that is: Thorenfeldt
et al. (1987) and Lubliner et al. (1989). The selected values of concrete strengths
are: 20 MPa, 25 MPa, 30 MPa, 35 MPa and 40 MPa. Each of Young’s moduli and
the strain value at peak stress that needed to calculate the stress value according to
Desayi and Krishnan’s correlation (Desayi & Krishnan, 1964) for each value of con-
crete strength are delivered in Table 3.

For Krétzig and Polling’s correlation (Krétzig & Polling 2004), all curves are cal-
culated the based on the mesh size of 300 mm. In addition, we used the model code
recommendations (CEB-FIP, 2010) to calculate the following parameters:

— initial tangent modulus of deformation of concrete E,, =10 000 £,/ (16)
— undamaged modulus of deformation £, = E; [0.8 +0.2 J;"—g], (17)
— compressive stress that corresponds to zero crushing f.g = 0.4 f,,,, (18)

— value of the strain at the peak stress & = 0.5 fc%'fl <28.107°, (19)
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ch — fim

Table 4 summarizes the values of the peak tensile stress and the strain at the peak
tensile stress for each value of concrete strength that are required to evaluate the
stress value according to Thorenfeldt’s correlation. For Lubliner’s correlations, we
used the values of coefficients a, a;, b. and b, that were calculated by Bakhti et al.
(2022) and are presented in Tables 1 and 2. Moreover, according to this approach,
the compressive and tensile stress—strain curves were divided into two parts. The
first one represents the linear segment where the stress is evaluated according to
Hooke’s law. The second one represents the non-linear part where the stress is evalu-
ated according to Lubliner’s formulas.

For the compression case and according to Figures 4-8, the following observa-
tions can be outlined:

— The curves of the Barcelona model that were generated by Concrete v. 2.0 are
completely in harmony with the stress—strain curve generated, according to the
Lubliner’s formula; this observation can be justified by the fact that the hardening
function used in the implementation of DPM is identical to Lubliner’s formulas.

— For the concrete strengths less than 25 MPa, the outcomes of the Barcelona mod-
el calculated using Concrete v. 2.0 are partly consistent with the stress—strain
curve generated according to the Krétzig’s formula. For values more than 25 MPa
and using the Krétzig decomposition (Fig. 3), we observed that the curves of the
Barcelona model diverge from the Kritzig’s curve depending on the concrete
strengths, especially in the third part.

— Using the Krétzig decomposition (Fig. 3), the outcomes of the Barcelona model
are partly consistent with the stress—strain curve generated according to the De-
sayi’s formula in the first and the second part (Fig. 3). As for the third part, the
difference between both curves is significant.

2
— crushing/fracture energy G , = [fcmj G [N-mm '], where G, =0.073 %%, (20)

TABLE 3. Input data of Desayi and Krishnan’s curve TABLE 4. Input data of Thorenfeldt’s curve

Jom [MPa] 6 (<10 [] E [MPa] Som IMPa] [ 60 (<109 [ [ fi [MPa]
20 1.8 22 890 20 0.68 1.58
25 1.9 26 130 25 0.79 1.99
30 2 29910 30 0.87 2.37
35 2.1 32890 35 0.93 2.71
40 2.2 35940 40 0.98 3.04

Source: own work. Source: own work.
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FIGURE 4. Compressive stress—strain curve for f,, = 20 MPa

Source: own work.
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FIGURE 5. Compressive stress—strain curve for f,,, = 25 MPa

Source: own work.
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FIGURE 7. Compressive stress—strain curve for f.,, = 35 MPa

Source: own work.
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FIGURE 8. Compressive stress—strain curve for f,, = 40 MPa

Source: own work.

For the tension case and in terms of Figures 9—13, the following notes can be
made:

— The outcomes of the Barcelona model are consistent with the stress-strain curve
generated according to the Lubliner’s formula, which can be justified by the
adopted hardening function that is identical to Lubliner’s formulas.

— Using the decomposition of the tensile stress—strain curve that is illustrated in
Figure 2b, the tensile curves of the Barcelona model are entirely consistent with
the stress—strain curve generated according to the Thorenfeldt’s formula in the
first part. As for the second part, the Barcelona model gives results that are partly
similar to the Thorenfeldt’s formula.

Those observations are based mainly on the fact that the compressive and tensile
stress—strain curves of the Barcelona model are calculated according to Lubliner’s
correlations that are used as a hardening function in our finite element implemen-
tation. To address another correlation, a simple modification in the finite element
implementation of DPM will be required through re-computing, the derivative of
the yield function with respect of stresses, the derivative of the yield function with
respect of the inelastic compression strain.
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FIGURE 10. Tensile stress—strain curve for f,, = 25 MPa (f,,, = 1.99 MPa)

Source: own work.
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FIGURE 13. Tensile stress—strain curve for f,, = 40 MPa (f,,, = 3.04 MPa)

Source: own work.

Conclusions

This paper has provided a comparative study of the stress—strain curves gener-
ated according to the Barcelona model and five stress—strain correlations in order
to examine the effect of the hardening function in the final outcomes. For the
compression case, the outcomes of the Barcelona model were compared with the
stress—strain curves of Desayi, Kritzig and Lubliner. The following conclusions
can be outlined:

— All curves are relatively close to each other in the ascending part.

— The curves of the Barcelona model are identical to the stress—strain curves gener-
ated by the Lubliner’s formula.

— For concrete strengths less than 25 MPa, the curves of the Barcelona model are
partly consistent with the stress—strain curve generated according to the Kritzig’s
formula. For values more than 25 MPa, the curves of the Barcelona model move
away from the Krétzig’s curve depending on the concrete strengths, especially in
the descendant part.
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— In the descendant part, the difference between the curves of the Barcelona model
and of Desayi is significant.

For the tension case, the following conclusions can be made:

— All curves are relatively close to each other in the ascending part.

— The outcomes of the Barcelona model are consistent with the stress—strain curve
generated according to the Lubliner’s formula.

— The Barcelona model gives results partly similar to the Thorenfeldt’s formula,
especially in the descendant part.

Consequently, the outcomes of the Barcelona model depend mainly on the hard-
ening function used. In our case, Lubliner’s correlations are used as a hardening
function in our finite element implementation of DPM (Concrete v. 2.0), which can
justify the obtained results. The authors recommend extending the application field
of DPM by changing the hardening function (stress—inelastic strain correlation) and
re-computing the derivative of the yield function with respect to stresses and the
derivative of the yield function with respect to the inelastic compression strain.
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Summary

Investigation for stress—strain curves of the plastic damage model for concrete. The
Barcelona model is one of the most widespread models used in the nonlinear finite element
method for simulating the real behavior of concrete. The strong robustness of this model can
be attributed to two main reasons, the first one being its ability to account for the elastic stiff-
ness degradation induced by plastic straining and the second one the aptness of considering
the stiffness recovery effects under cyclic loading. This model was examined in the paper by
comparing the generated stress—strain diagrams with several analytical solutions from the
literature. The comparing process in the compression and tension cases with the closed-form
solutions of Desayi, Krétzig, Lubliner and Thorenfeldt proved that the Barcelona model pro-
vided identical outcomes with Lubliner’s formula, which was used as the hardening function
in the finite element implementation of this model. What is more, this model provided the
same curves in case of the others in the ascending branches, and for the descending branch,
this study proved that the outcomes of the Barcelona model are completely different from
the ones of Desayi in the compression case and slightly similar to Thorenfeldt’s curves in the
tension case.



