Spatial mapping of the leaf area index using remote sensing and ground measurements – the Biebrza National Park case study

Keywords: leaf area index, wetlands, remote sensing, spectral vegetation indices, Biebrza

Introduction

The leaf area index (LAI) is one of the most important parameters describing the vegetation structure in terrestrial ecosystems. It is related to many environmental processes, including biophysical processes affecting the exchange of matter and energy between soil, vegetation and the atmosphere, such as photosynthesis, transpiration, evapotranspiration, interception, biomass and net primary production. The parameter is fundamental to studies of the dynamics of vegetation change and, above all, to studies of the exchange of energy and mass fluxes within the vegetation–atmosphere interface. It is defined as the summed ratio of the one-sided leaf area to the substrate area over which it is located:

\[
LAI = \frac{\text{one sided leaf area}}{\text{substrate area}} [\text{m}^2].
\]
The parameter is one of the most difficult to estimate correctly due to its considerable spatial as well as temporal variability. In the field, it can be determined by several direct and indirect measurement methods. Direct measurement methods are among the most accurate but are time-consuming and difficult to implement on a large scale. Indirect measurement methods include, but are not limited to, optical methods that infer LAI from the transmission of radiation through vegetation cover using the radiative transfer theory (Welles & Cohen, 1996). These are non-invasive methods that describe vegetation structure in a statistical and probabilistic approach. They use Beer–Lambert’s law, according to which the total amount of radiation intercepted by a vegetation cover depends on the vegetation structure, optical properties and instantaneous irradiance (Szporak, 2012). Measurements using non-invasive methods enable rapid and efficient acquisition of information about the LAI values of the vegetation present in a given area, which can then be used to determine the spatial variability of the index from remotely sensed data.

In the analyses conducted as part of this study, the LAI-2000 Plant Canopy Analyzer from LI-COR Biosciences was used to measure the leaf area index. The instrument measures diffuse blue light (320–490 nm) at a 148-degree viewing angle (fisheye lens). To calculate the LAI value at a given research area, it is necessary to take measurements both above the vegetation cover (reference measurement) and in the plant community. Based on the amount and intensity of diffuse blue light reaching the sensor, the projected area of leaves is estimated using algorithms implemented in the control console (LI-COR Biosciences, Inc., 1992). Measurements of the index were made for wetland vegetation of the Biebrza river valley, taking into account selected communities of sedge rushes (Caricetum appropinquatae, Caricetum elatae), willow scrub (Salicetum pentandro-cinereae), alder (Ribeso nigri-Alnetum) in the lower Biebrza and acid low sedge mire (Carici canescentis-Agrostietum caninae) in the upper Biebrza river valley. Unfortunately, measurements of the LAI for this vegetation type are still rare in the national as well as the world literature. Most studies on the formation of this index mainly concern forests and agricultural land. In Europe, studies on the formation of spatial variability of LAI for grass or sedge vegetation of wetlands were conducted, among others, by Darvishzadeh, Skidmore, Atzberger and Wieren, (2008), Dąbrowska-Zielińska, Gruszczynska, Lewinski, Hościło and Bojanowski (2009), Budzyńska, Dąbrowska-Zielińska, Turlej, Malek and Bartold (2011), Darvishzadeh, Atzberger, Skidmore and Schlerf (2011), and Szporak (2012). Measurements of the leaf area index carried out within the framework of these studies made it possible to work out both its seasonal variability in 2007 and to determine its spatial variability using Landsat 5TM remote sensing data.
Study area

The study was carried out in north-eastern Poland in the Biebrza river valley within the boundaries of the Biebrza National Park (Fig. 1). In relation to adjacent areas, the valley is marked as an area with different thermal and humidity characteristics. This is due to the overlapping of climate features associated with the extensive peatlands, the valley form and the general climate features of north-eastern Poland. The climate is close to continental with subboreal elements. It is characterized by a long winter, a long pre-winter and the shortest (except in the mountains) growing season.

In the Biebrza basin area, a decrease in temperature from south-west to north-east is observed between November and March. In the coldest month of the year, February, the average monthly temperature decreases from approx. –4.5°C on the
south-western edges (lower basin) to approx. –5.5°C at the north-eastern extremi-
ties (upper basin), with a maximum average of about –1.5 to 2.5°C and a mini-
mum average of approx. –8.5 to –9.0°C. Winter starts the earliest in the north-east
(27 November) and the latest in the south-west (4 December). It lasts 107–108 days
in the lower basin and 116–117 days in the upper basin. Average annual precipita-
tion in the northern part of the Biebrza basin ranges from 470 to 550 mm, while
in the southern part it is about 550 mm. The highest precipitation falls in summer,
with a maximum in July (70–90 mm), and the lowest in January to March, with
a minimum in January (20–25 mm). In the north-eastern part of the Biebrza basin,
summer semiannual precipitation exceeds 67% of the annual total, while in the rest
of the basin it is about 65%. The Biebrza river flows in a valley with low gradients,
and groundwater feeding the valley flows slowly towards the riverbed or exfil-
trates in the bottom of the wetlands that occur here. The wetlands of the Biebrza
valley are primarily peatland ecosystems. Covering an area of over a 100 thous. ha,
they form one of the largest peat complexes in Poland.

Methodology

Field measurements

The leaf area index field measurements were made at a fixed altitude with the
same azimuthal position of the sensor and at several locations of the plant com-
munity under study so as to capture its heterogeneity and obtain a representative
sample for the LAI models implemented in the LAI-2000 recorder. The LAI value
at a given measurement point was usually the average of 10–11 measurements.
Measurements for the selected plant community were taken within a limited area,
the size of which was dictated by the size of the plant community patch, as well as
the spatial resolution of the Landsat 5TM satellite image. In the case of LAI mea-
surements in the forest, reference measurements were usually taken at the forest
edge or in adequately large clearings within them.

Remote sensing data

A medium-resolution satellite image from the Landsat 5TM satellite (U.S. Geo-
logical Survey [USGS], 2023) from 28 May 2007 was used in the estimation of
the spatial variability of LAI. The image was subjected to atmospheric correction
using the MODTRAN radiative transfer model based on the physical characteris-
tics of the actual atmospheric conditions. The estimation of the spatial distribution
of the LAI is based on an empirical relationship between vegetation parameters
measured in the field and spectral vegetation indices developed from the satellite
The vegetation index is calculated based on a combination of several spectral bands, whose values are added, divided or multiplied between each other to obtain a value representing the area and condition of the vegetation cover. Due to the type of remote sensing data processed, selected broadband indices were used in the analyses (Table 1). The simplest spectral index is the simple ratio (SR) representing the ratio between near-infrared and red reflectance.

TABLE 1. Selected spectral indices

<table>
<thead>
<tr>
<th>Spectral index</th>
<th>Abbreviation</th>
<th>Equation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference vegetation index</td>
<td>DVI</td>
<td>(\frac{NIR - Red}{1 + NIR + 6 \cdot Red - 7.5 \cdot Blue})</td>
<td>Tucker (1979)</td>
</tr>
<tr>
<td>Enhanced vegetation index</td>
<td>EVI</td>
<td>(\frac{2.5 \cdot (NIR - Red)}{1 + NIR + 6 \cdot Red - 7.5 \cdot Blue})</td>
<td>Birth and McVey (1968)</td>
</tr>
<tr>
<td>Global environment monitoring index</td>
<td>GEMI</td>
<td>(\eta (1 - 0.25\eta) \frac{Red - 0.125}{1 - Red})</td>
<td>Pinty and Verstraete (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\eta = \frac{2(NIR^2 - Red^2) + 1.5 \cdot NIR + 0.5 \cdot Red}{NIR + Red + 0.5})</td>
<td></td>
</tr>
<tr>
<td>Modified soil adjusted vegetation index</td>
<td>MSAVI2</td>
<td>(0.5 \left[2 \cdot NIR + 1 - \sqrt{(2 \cdot NIR + 1)^2 - 8 \cdot (NIR - Red)} \right])</td>
<td>Qi, Chehbouni, Huete, Kerr and Sorooshian (1994)</td>
</tr>
<tr>
<td>Moisture stress index</td>
<td>MSI</td>
<td>(\frac{SWIR}{NIR})</td>
<td>Rock, Vogelmann, Williams, Vogelmann and Hoshizaki (1986)</td>
</tr>
<tr>
<td>Modified simple ratio</td>
<td>MSR</td>
<td>(\left[\frac{NIR}{RED} - 1 \right])</td>
<td>Chen (1996)</td>
</tr>
<tr>
<td>Normalized difference vegetation index</td>
<td>NDVI</td>
<td>(\frac{NIR - Red}{NIR + Red})</td>
<td>Rouse, Haas, Schell and Deering (1974)</td>
</tr>
<tr>
<td>Renormalized vegetation index 1</td>
<td>RDVI1</td>
<td>(\sqrt{NDVI \cdot DVI})</td>
<td>Roujean and Breon (1995)</td>
</tr>
<tr>
<td>Renormalized vegetation index 2</td>
<td>RDVI2</td>
<td>(\frac{NIR - Red}{\sqrt{NIR + Red}})</td>
<td>Roujean and Breon (1995)</td>
</tr>
<tr>
<td>Soil and atmospherically resistant vegetation index</td>
<td>SARVI</td>
<td>(\frac{(1+1) \cdot (NIR - Rrb)}{NIR + Rrb + 1})</td>
<td>Kaufman and Tantré (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Rrb = Red - 1 \cdot (Blue - Red))</td>
<td></td>
</tr>
<tr>
<td>Soil adjusted vegetation index</td>
<td>SAVI</td>
<td>(\frac{(1 + L) \cdot NIR - Red}{NIR + Red + L})</td>
<td>Huete (1988)</td>
</tr>
<tr>
<td>Simple ratio</td>
<td>SR</td>
<td>(\frac{NIR}{Red})</td>
<td>Jordan (1969)</td>
</tr>
<tr>
<td>Triangular vegetation index</td>
<td>TVI</td>
<td>(0.5 \cdot [120 \cdot (NIR - Green) - 200 \cdot (Red - Green)])</td>
<td>Broge and Leblanc (2000)</td>
</tr>
</tbody>
</table>

Source: own work.
Results

Results of field measurements

The study shows that the highest values of the LAI coefficient are observed for the majority of plant communities in the Biebrza valley during the full growing season, i.e., in June and July (Fig. 2). The growing season in this part of Poland is quite short (about 192 days), and already in August we observe a decrease in the leaf projection area of the majority of the analyzed plant communities.

FIGURE 2. Seasonal variation of the leaf area index (LAI) for selected plant communities in the Biebrza valley
Source: own work.
The seasonal variation of the LAI for low vegetation is somewhat different from that of willow scrub and alder. The difference is particularly marked at the beginning of the growing season when the leaf area index of low vegetation increases more dynamically. The situation reverses in June when there is a gradual, further increase in LAI for forest and scrub communities, and a smaller increase for sedge communities and meadows, which are mown at this time. The fieldwork shows that the vegetation of natural river valleys is characterized by a high degree of variability not only in space, but also in the duration of the growing season.

Results of remote sensing analyses

The statistical relationship between the LAI values measured in the field and the spectral indices calculated for the satellite image is shown in Table 2 and Figure 3. All spectral indices were significantly correlated with the LAI ($p < 0.05$). The highest coefficient of determination and the highest correlation coefficient were obtained for NDVI (0.7174). The linear regression models and the obtained coefficients of determination for the analyzed spectral vegetation indices are presented in Table 2.

<table>
<thead>
<tr>
<th>Spectral vegetation indices (SVI)</th>
<th>Regression model</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NDVI$</td>
<td>$9.7686x - 1.9528$</td>
<td>0.7174</td>
</tr>
<tr>
<td>$SAVI$</td>
<td>$8.886x - 1.9520$</td>
<td>0.7173</td>
</tr>
<tr>
<td>MSI</td>
<td>$-3.6807x + 6.4378$</td>
<td>0.6982</td>
</tr>
<tr>
<td>MSR</td>
<td>$3.276x - 0.438$</td>
<td>0.6958</td>
</tr>
<tr>
<td>SR</td>
<td>$1.181x - 0.7640$</td>
<td>0.6652</td>
</tr>
<tr>
<td>$RDVI$</td>
<td>$0.7296x - 1.1814$</td>
<td>0.6290</td>
</tr>
<tr>
<td>$SARVI$</td>
<td>$1.8348x - 2.012$</td>
<td>0.5979</td>
</tr>
<tr>
<td>TVI</td>
<td>$0.0008x - 0.2074$</td>
<td>0.5756</td>
</tr>
<tr>
<td>$RDVI$</td>
<td>$0.8219x - 3.6049$</td>
<td>0.5282</td>
</tr>
<tr>
<td>$MSAVI$</td>
<td>$0.0482x - 0.2378$</td>
<td>0.5172</td>
</tr>
<tr>
<td>DVI</td>
<td>$0.05x - 0.2491$</td>
<td>0.5069</td>
</tr>
<tr>
<td>$GEMI$</td>
<td>$0.0003x + 1.4864$</td>
<td>0.4589</td>
</tr>
<tr>
<td>EVI</td>
<td>$-5.2764x + 0.1103$</td>
<td>0.4147</td>
</tr>
</tbody>
</table>

Source: own work.
From the analysis of the satellite image taken in May, the LAI reached the highest values in that part of the valley where significant areas are covered by reed and sedge rushes and deciduous forests (alder and swamp birch) characterized by high biomass. The lowest values of the index were observed in groundwater-logged areas in the Ławki Marsh, as well as areas directly adjacent to the bed of the Biebrza river and its tributaries, where surface water flooding persisted in places (southern and south-western parts of the middle Biebrza valley and the middle part of the upper Biebrza valley).

Conclusions

The measurements of the leaf area index show that the vegetation of natural river valleys is characterized by high spatial and seasonal variability. The highest values of the LAI index were observed from the second half of June to the end of July for all considered plant communities of the Biebrza valley. The seasonal variability of the LAI for sedge communities developed differently from that of willow scrub and alder. At the beginning of the growing season, the LAI for sedge communities increases more dynamically. The situation changes in June, when, with a gradual increase in the LAI for forest and scrub communities reaching its maxi-
mum in mid-July, there is a smaller increase in the index for sedge communities. The main reason for this difference is the use of open areas of peatlands, which are mown in June. The study of the LAI on such a large extensively used area therefore additionally requires knowledge of the methods of use, as well as the timing of the application of individual agrotechnical measures.

Among the tested vegetation indices developed from the Landsat 5TM satellite imagery, the NDVI and SAVI indices produced the best results in estimating the spatial variability of the LAI. In the analysis carried out, these indices obtained a coefficient of determination value above 0.70.

References

Summary

Spatial mapping of leaf area index using remote sensing and ground measurements – the Biebrza National Park case study. The purpose of the described research was an attempt to estimate the leaf area index (LAI) parameter describing the structure of the vegetation based on Landsat 5TM satellite imagery and field measurements made with the use of an optical plant canopy analyzer. The study was carried out in north-eastern Poland in the Biebrza river valley within the boundaries of the Biebrza National Park during the growing season of the year 2007. There were 13 spectral indices given in the literature known to be
correlated with the LAI. The highest coefficient of determination and the highest correlation coefficient was obtained for the normalized difference vegetation index ($NDVI$) and the soil adjusted vegetation index ($SAVI$) indices for wetland areas in the Biebrza river valley. The field measurements of the leaf area index and its spatial representation on satellite image show that the vegetation of natural river valleys is characterized by high spatial and seasonal variability. The study of LAI on such large natural areas that are extensively used also requires knowledge of the methods of land use and the application of individual agrotechnical measures.