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Introduction

For water authorities to effectively manage water reserves for different water
users like hydropower generation, agricultural, domestic, flood management, etc., it
is necessary to forecast river flow hours, days, months, or possibly longer in advance.
Large volumes of dynamic, non-linear, and noisy data can be handled effectively
using soft computing approaches, especially when the underlying physical relations
are not understood.
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For rainfall-runoff modeling and runoft forecasting, neural network models are
successfully applied and can be found in the literature (Dawson & Wilby, 1998;
Jain & Chalisgaonkar, 2000; Raghuwanshi, Singh & Reddy, 2006; Tayfur & Singh,
2006; Besaw, Rizzo, Bierman & Hackett, 2010; Rezaeian Zadeh, Amin, Khalili
& Singh, 2010). The ASCE Task Committee (2000) reviews hydrologic applications
of artificial neural network (ANN). Solaimani (2009) utilized ANN for modeling the
rainfall runoff relationship in a catchment area located in a semiarid region of Iran
by adopting feed forward back propagation for the rainfall forecasting with various
algorithms with performance of multi-layer perceptions. The monthly stream flow
of Jarahi watershed was analyzed to calibrate the given models. The monthly hydro-
metric and climatic were ranged from 1969 to 2000. The results extracted from the
comparative study indicated that ANN was more appropriate and efficient to pre-
dict the river runoff than the classic regression model. Using the feed-forward back
propagation neural network (FFBPNN) and the cascade forward back propagation
neural network (CFBPNN) models, Mohseni and Muskula (2023) created rainfall-
-runoff-based models in the Yerli sub-catchment of the upper Tapi basin using data
from 36 years from 1981 to 2016 and concluded that the developed ANN model was
capable of predicting runoff quite accurately.

Wavelet transform (WT) has gained popularity recently as a helpful method for
examining trends, periodicities, and variations in time series. Similar to the Fourier
transform and short-time Fourier transform, a WT is a powerful mathematical tool
for signal processing that can analyze both stationary and non-stationary data and
produce time and frequency information at a higher resolution that is not possible
with the former. The WT offers a multiresolution analysis; that is, at low scales (high
frequency), it provides poor frequency resolution and better time resolution; at high
scales (low frequency), it provides poor frequency resolution and higher time res-
olution. Such information is significant in real practice for all time-series signals.
The WT breaks down a non-stationary time series into a specific number of station-
ary time series. The WT is then used to integrate other single prediction techniques
to increase prediction accuracy. Another trustworthy hybrid model for application
in time series forecasting issues is the wavelet-ANN (WANN). To estimate runoff
discharge for the Ligvanchai watershed in Tabriz, Iran, Nourani, Komasi and Mano
(2009) explored the rainfall-runoff modeling utilizing the wavelet-ANN technique.
The time series were decomposed up to four levels using Haar, Daubechies (db2),
Symlet (sym3), and Coiflet (coifl) wavelets. The model’s outcomes demonstrated the
great quality of the Haar wavelet when compared to the others. Kisi (2009b) proposed
neuro-wavelet model for forecasting daily intermittent stream flow. Forecasting accu-
racy of neuro-wavelet model was better than single ANN model. To predict the flow
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of'the Malbrabha river in India, Nayak, Venkatesh, Krishna and Jain (2013) developed
a wavelet neural network (WNN) hybrid model employing the db5 wavelet for one
time step ahead forecasting. According to the results, the WANN model outperformed
the ANN model. Nourani, Baghanam, Adamowski and Gebremichael (2013) utilized
feed forward neural networks (FFNN) to model the rainfall-runoff process on a daily
and multi-step (two days, three days and four days) ahead time scale. Authors used
db4 and Haar wavelets to remove noise from runoff time series and discovered that
the performance of the FFNN was improved by applying WT to the raw runoff data.
Also, it was concluded that db4 wavelet exhibits superior results as compared to Haar
wavelet. Shafaei and Kisi (2017) compared the WANN model with ANN and SVM
for prediction of short-term daily river flow of Ajichai river of Iran. A db5 mother
wavelet was used to decompose the raw data and concluded that the WANN model
performed better than ANN and SVM. Wang et al. (2022) developed hybrid models
by combining the wavelet theory with five diverse types of machine learning mod-
els such as support vector machine (SVM)-radial basis function, SVM-polynomial,
decision tree, gradient boosting, random forest, and long- or short-term memory. The
db4 mother wavelet was used in the study. A comparison revealed that hybrid models
exhibit better estimates than the stand-alone ones. To estimate monthly stream flows
in Amasya, Turkey, Katipoglu (2023a) combined a discrete wavelet transform and
a feedforward backpropagation neural network. The author decomposed various mete-
orological data using different wavelets such as Haar, Daubechies 2, Daubechies 4,
Discrete Meyer, Coiflet 3, Coiflet 5, Symlet 3, and Symlet 5, and found that the
results of Coiflet 5 was superior. Katipoglu (2023b) developed wavelet-ANFIS
(W-ANFIS) model using db10 mother wavelet for predicting monthly Bitlis river flows
in Turkey and concluded that the W-ANFIS model proved successful. Other stud-
ies on runoff prediction using wavelet-ANN are found in literature (Rao & Krishna,
2009; Adamowski & Sun, 2010; Linh et al., 2021; Kumar, Kumar, Kumar, Elbeltagi
& Kuriqi, 2022). Nourani, Baghanam, Adamowski and Kisi (2014), Khandekar and
Deka (2016) review the application of WT in hydrology. Application of WT in drought
prediction, groundwater prediction, evaporation prediction can be found in the litera-
ture (Djerbouai & Souag-Gamane, 2016; Patil & Deka, 2017; Araghi, Adamowski
& Martinez, 2020; Katipoglu, 2023¢; Katipoglu, 2023d; Katipoglu, 2023¢).

In time series forecasting issues, the wavelet-MLR (WMLR) is another trust-
worthy hybrid model. Kisi (2010) combined discrete wavelet transform and linear
regression (WR) for short-term stream flow forecasting of two stations in Turkey.
In comparison to ANN and ARMA models, WR models are found to be more supe-
rior. Kisi (2011) proposed a wavelet regression (WR) model for daily river stage
forecasting of two stations on the Schuylkill river in Philadelphia. The result of
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a WR model was superior to the ANN models. Zhang, Zhang and Sing (2018) devel-

oped four models — MLR, ANN, wavelet coupled with MLR (W-MLR) and ANN

(W-ANN) — for stream flow forecasting at four stations in the East River basin in

China. All models showed similar performance in forecasting stream flow one-day

ahead, while W-MLR and W-ANN performed better in five-day ahead forecasting.

Other studies on runoff prediction using wavelet-MLR is found in literature (Kisi,

2009a; Budu, 2013; Shoaib et al., 2018; Khazaee Poul, Shourian & Ebrahimi, 2019).
Most previous investigations employed a selected mother wavelet type. Also,

more research is required to fully understand the potential of Daubechies wavelets

of different orders in studying hydrologic time series behavior. So, in this study, it
is suggested to create hybrid models by coupling wavelet transform with ANN and

MLR, with the following objectives:

1. To compare the results of all hybrid models (WANN, WMLR) developed using
dbl, db2, db3, db8 and db10 Daubechies wavelets for multiple lead times (two
days, four days, seven days, 14 days). Also, to compare results of hybrid models
with standalone ANN and MLR models.

2. To investigate the effect of Daubechies wavelets db1, db2, db3, db§, and db10 on
forecasting accuracy.

3. To investigate how decomposition level affects model effectiveness.

Study area and data collection

With an average discharge at its mouth of 19,830 cumec, Brahmaputra is the
fourth-largest river in the world (Goswami, 1985). Brahmaputra river Pancharatna
station is selected for the study. Ten-year (Jan 1990 — Dec 1999) daily flow data were
collected from Water Resources Department, Assam, India. The catchment area up
to Pancharatna station is 532,000 km?. The seasonal monsoon rhythm and the Hima-
layan snow’s freeze-thaw cycle influence the river’s hydrologic regime. During the
flood season, there are noticeable large changes in discharge over a short period of
time. A maximum differential of roughly 17,000 m*-s~! in 24 h (June 7-8, 1990) and
24,000 m*-s™" in 48 h (June 7-9, 1990) was observed in rising limb (Sarma, 2005).
The location of Pancharatna station is shown in Figure 1.

Figure 2 displays the observed time series discharge at Pancharatna station. Fig-
ure 2 demonstrates that the discharge is remarkably non-stationary, particularly dur-
ing monsoon season (from June to September, each year). The contribution of flow
from snow melting, during February to April, causes the discharge in the rising limb
to fluctuate as well.
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FIGURE 1. Location of the gauging sites
Source: Khandekar (2014).
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FIGURE 2. Observed flow series
Source: Khandekar (2014).

Table 1 displays the statistical properties of flow data and demonstrates substan-
tial variability. The terms Oeans Omaxs Omin» S¢» and C, in the table stand for the
mean, maximum, minimum, standard deviation, and skewness, respectively.
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TABLE 1. Statistical properties of flow data The discharge throughout the study period
Statistical Tinie Tostin Al exhibits significant fluctuations, as shown in
parameter ¢ & Table 1 (minimum = 1,723 cumec, the high-
Oven[m*s] 16159 16236 16 161 est = 76,236 cumec). The standard deviation
O [ms'] 59832 76236 76236 1S Qete'rmmed tg be .11,965 cumec, showing
a significant dispersion of values from the
Omin[m*s™'] 2628 1723 1723 ..
mean. Additionally, the observed flows show
Salms7] 11783 12388 11965 gjopificant positive coefficient of skewness
Cy 0726 0968  0.809 (Cy = 0.809), indicating that the data has
Source: Khandekar (2014). a more scattered distribution about the mean.
Methodology

Wavelet transform (WT)

Wavelet theory is discussed thoroughly in works by Mallat (1998), and Labat,
Ababou and Mangin (2000). Wavelet transform of a raw signal has the ability of
providing time-frequency, using a range of window sizes. It divides the input signal
into wavelets (small waves), which are scaled and shifted versions of the original
wavelet, called mother wavelet. There are two forms of wavelet transformation: the
continuous wavelet transform (CWT) and the discrete wavelet transform (DWT). The
CWT of a signal x(¢) is described:

CWT(a,b)z%_[“’mx(t)-y/*(tab]~dt. (1)

In Eq. (1), the transformed signal is a function of two variables, a and b, which
represent the scale and translation factor of the function ¥(¥), respectively; * corre-
sponds to complex conjugate (Mallat, 1998).

The ¥ (¢) is the transforming function, called as mother wavelet, is mathemati-
cally defined as:

[~y ()de=o. )

From a data set of length (L), CWT produces L? coefficients. Therefore, duplicate
data is trapped within the coefficients, which may or may not be a desired quality
(Nourani et al., 2009; Rajaee, Nourani, Zounemat-Kermani & Kisi, 2011). The ana-
lysis will be significantly more precise and efficient, resulting in N transform coef-
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ficients, if scales and positions are chosen based on the powers of two. The resulting
transform is called DWT, and has the form:

Wy (1) =— w[t"l::’a“m} 3)

m

a

o

where the wavelet translation and dilation are each controlled by an integer, m, and
the other by n; b, which must be larger than 0, is the location parameter; a,, is a speci-
fied fixed dilation step greater than 1. The most common and simplest choice for
parameters a, and b, are 2 and 1 (time steps), respectively. This power of two loga-
rithmic scaling of the translations and dilations is known as the dyadic grid arrange-
ment (Mallat, 1989). For parameters @, and b, 2 and 1 (time steps), respectively, are
the most typical options. According to Mallat (1989), this power-of-two logarithmic
scaling of the translations and dilations is referred to as the dyadic grid layout.

Two sets of functions, known as high-pass (wavelet function) and low-pass (scaling
function) filters, are operated by DWT. The original time series undergo processing via
high-pass and low-pass filters (as shown in Fig. 3), followed by a down-sampled pro-
cess that discards every second data point (Deka & Prahlada, 2012). The detailed (D,
D,, ..., D,) and approximation (44, A5, ..., 4, coefficients, which represent the low fre-
quency and high frequency components of the original signal, respectively, are derived
after the signal is passed through high pass and low pass filters. There will be a total of
n + 1 coefficients at every given n decomposition level, where there will be one series
of approximation coefficients at the n'" level (4,,) and n series of detailed coefficients
(Dy, Dy, ..., D,). The sum of 4, + Dy + D, +... + D,, is equal to the original signal.

h(n) — high pass filter
g(n) — low pass filter Ay g(n)
A,
@ Tsubsamplingby2 g, o) @
[N}
g(n) h(n) 4@_’
D,

x(1) h(n) @
Level 3 DWT coefficients
h(n) @ D,

D Level 2 DWT coefficients
Level 1 DWT coefficients

FIGURE 3. Wavelet decomposition tree
Source: Khandekar (2014).
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Artificial Neural Network (ANN)

Neural networks are interconnected groups of artificial neurons that may be
utilized as a computational model for information processing based on the con-
nectionist approach to computing. An ANN may be thought of mathematically
as a universal approximator with the capacity to learn from instances without the
need of explicit physics.

Three-layer-feedforward artificial neural networks are most frequently utilized
in hydrologic time series modeling (Jain & Chalisgaonkar, 2000; Raghuwanshi,
Singh & Reddy, 2006; Tayfur & Singh, 2006; Bajirao, Kumar, Kumar, Elbeltagi
& Kauriqi, 2021; Katipoglu, 2023a). In the current study, the Lavenberg—Marquardt
(LM) learning function and tangent sigmoid as the transfer function were employed
in the feedforward ANN. The LM technique was used to train the ANN since it
is more effective and faster than the traditional gradient descent technique (Kisi,
2009b; Mohseni & Muskula, 2023). In three-layer-feedforward ANN, information
flow takes place from the input to the output side. Weights regulate the strength of
a signal that passes across connections between neurons, altering the information that
is transferred between them. While not connected to nodes in the same layer, nodes
in one layer are connected to those in the next one. As a result, a node’s output in
a layer depends exclusively on the inputs and weights it receives from the previous
layers. Every node multiplies each input by its weight, adds up the result, and then
runs the total through a transfer function to get the desired outcome. Typically, this
transfer function is represented as a sigmoid function, which is an S-shaped curve
that increases continuously. The “S” upper and lower limb attenuation keeps the raw
sums smoothly within predetermined bounds. The transfer function additionally adds
a nonlinearity that improves the network’s capacity to represent complicated func-
tions (Jain & Chalisgaonkar, 2000). The sigmoid function is monotonically growing,
continuous, and differentiable everywhere.

Multiple linear regression (MLR)

The MLR is one of the statistical methods which represents a mathematical
equation expressing the relation between two or more explanatory variable and
a response variable. The MLR attempts to model the link between two or more
explanatory variables and a response variable by fitting a linear equation to the
observed data (Sharma, Isik, Srivastava & Kalin, 2013). The relationship between
the dependent variable y and the independent variable x is described by the MLR
equation as follows:
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y=A0+A1x1+A2x2+"'+Anxn “4)

where: x,, is the value of nth predictor, Ay is the regression constant, 4, is the coef-
ficient of n™ predictor.

Model development

Input selection in model

For deciding the number of input parameters, no fixed rule is available. The val-
ues of the future time step (Q,+,) in any time-series forecasting are inevitably reliant
on the antecedent values Oy, O, 1, Oy, ..., O (Table 2). But because the value of
(lag) is not known beforehand, it is difficult to determine how many lags in the past
will lead to higher efficiency. In hydrologic time series forecasting, determining j is
crucial since it can help to reduce information loss and the omission of critical input
variables that could interfere with training.

TABLE 2. Correlation coefficients for the flow series

Output” Input (O, )*

(Qr+n) 0, 01 012 O3 O 4 Ors O 6 017 O Or9
O 0.983 0.971 0.957 0.942 0.929 0.915 0.903 0.891 0.880 0.871
Oa 0.957 0.942 0.928 0.915 0.902 0.891 0.880 0.870 0.862 0.854
07 0.915 0.902 0.891 0.880 0.870 0.862 0.854 0.846 0.839 0.832
Oi14 0.846 0.839 0.832 0.825 0.818 0.812 0.805 0.799 0.792 0.784

“n —lead time; j — lag.

Source: Khandekar (2014).

Numerous researchers (Sudheer, Gosain & Ramsastri, 2002; Budu, 2013; Nayak
et al., 2013; Khazaee Poul et. al., 2019; Sun, Niu & Sivakumar, 2019; Katipoglu,
2023a, 2023b, 2023c) have used the technique based on the statistical features such
as cross-correlation, autocorrelation and partial correlation of the data series in order
to identify a distinct input vector. In the current research, based on the autocorrela-
tion coefficient between the relevant variables (shown in Table 2), the input vectors
to the models are chosen. To forecast the value of discharge, based on the following
various input combinations were taken into account (Khandekar, 2014):

1. 0,
2.0, Oy
3. 01 O¢1y Q)
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4. 01, Ou-1)> Q-2 Q-3
5. 05 Q1) O-2)» O1-3)> O(r-4)-
6. Qs Q1) Q-2 Qi-3)» Qr-4)» Oi-5)-

ANN and MLR model development

At the first stage, to forecast discharge, ANN and MLR models without data pre-
processing were created. In the present study it was decided to predict discharge for
multiple lead times such as two days, four days, seven days and 14 days because
the Brahmaputra river is one of the major rivers in India which carries heavy flood
during monsoon season, so it is necessary to design flood warning system well in
advance. First 70% data was used to train the model and last 30% data was used for
testing the model. Initially, a three-layer feedforward backpropagation ANN were
applied in the study. For each lead time, an optimal input combination is obtained
by providing each of one to six input combination obtained through autocorrelation
as input to ANN and by varying number of neurons in the hidden layer from two to

10 through trial and error (Budu, 2013; Moo-

TABLE 3. Optimal input combination savi, Vafakhah, Shirmohammadi & Behnia,
Lead Output 2013). The optimal input combination that
time Input parameter”  parameter” gave the minimum root mean square error
Ll Qe (RMSE) during testing period for each lead
? O Qe Q) time is shown in Table 3. The output layer has
4 01 Q1 Q2 Qi3 Quera only one neuron which is the discharge value
7 O i1y Q2 Qe Qe for the given lead time. From viewpoint of
4 0,001 Qi 0us Qs comparing all models, same input combination

* is employed for the MLR and all hybrid mod-
- t disch lue; Ou 1y Ouay . } .

Or — current discharge value: Qi Qe 2 o The time series data normalized between
O(-3) — one-, two- and three-time step past dis- i o
charge values; **n — lead time. zero and one (Nourani et al., 2009) by dividing
Source: Khandekar (2014). the discharge value by the maximum one.

Development of hybrid models (WANN and WMLR)

After developing the ANN and MLR models, hybrid models were developed.
First of all, using DWT, for developing hybrid models, the normalized input data
were decomposed into approximation and detail coefficients. Since all hydrological
data are observed at discrete time intervals, all hybrid models used DWT to process
time series data in the form of approximations and details at various levels so that
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gross and small features of a signal can be separated (Deka & Prahlada, 2012). Then,
to obtain the output at a predetermined lead time, the approximation and detail coef-
ficient were fed as input to ANN and MLR. Without decomposition, the output sig-
nals were preserved as normalized original series. The complete flow chart of model
development is shown in Figure 4.

| Time series data ‘

v

| Data normalization ‘

v

Selection of input

combination based on ACF
/ v

ANN model MLR model Data pre-process using
development development DWT with different
Daubechies wavelets

|

Raw data decomposition
into approximation and
detail coefficients

A4 A 4

Performance evaluation (4i, D1, Dy, ..., D)
WANN model WMLR model
development development

A 4

‘ Performance evaluation ‘

l

Comparison of
model
performance

|

| Selection of best model |

\ 4

FIGURE 4. Flow chart of model development

Source: own elaboration.

Selection of mother wavelets and decomposition level

The mother wavelet that will be used depends on the data to be analyzed (Nayak
et al., 2013). As per authors’ knowledge, there is no comparative study on prediction
of hydrological parameter using group of Daubechies wavelets. So, in this research,
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an irregular wavelet, Daubechies (db) of orders 1 (dbl), 2 (db2), 3 (db3), 8 (dbl),
and 10 (db10), illustrated in Figure 5, was chosen to deal with very irregular signal
form. Daubechies wavelets of order N (dbN) are all asymmetric, orthogonal, and
biorthogonal. They are compactly supported wavelets with extremal phase and high-
est number of vanishing moments for a given support width (Misiti, Misiti, Oppen-
heim & Poggi, 2010). Daubechies wavelet has a support width of 2N — 1. Except
for dbl (haar), no Daubechies wavelet has an explicit expression. Wavelets with
compact support or a narrow window function are appropriate for a local analysis of
the signal.

db1 db2 db3

1
db10 Wavelet
0.5 1 T
05f
0
0
-0.5 05}
-1
1 15 : : :
0 5 10 15 0 5 10 15 20
db8 db10

FIGURE 5. Daubechies wavelets
Source: Khandekar (2014).

The optimal decomposition level was obtained using the formula / = int [log (L)],
(Nourani et al., 2014; Khazaee et al., 2019; Tarate et al., 2021; Katipoglu, 2023a,
2023b, 2023c¢), where [ is the decomposition level, L represents the number of time
series data, int represents the integer part function, and log represents logarithm with
base 10. In the present study, L is 3,650 so / is approximately four. However, in our
study, we decomposed raw signal up to fifth level. At any /" decomposition level,
DWT produces / detailed coefficients and one approximation coefficient at /™ level.
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Performance criteria

The following evaluation measures were used to compare model performance.

RMSEZ\/Zf_](QOIZ_Qcom) , (5)
R =1 2o = Oon)” ©
D (O — Ou)
maE=13"2 10, ~0.), 1)
n
> O
B=ST (8)
Z i=1 Zobs
g = RMSE ©

L —_— b
Z i=1 Qobs

where: RMSE, R*>, MAE, B, SI, L, Oups, Ocom,» and Q b Ar€ Toot-mean squared error
(RMSE), determination coefficient (R?), mean absolute error (MAE), bias (B), scat-
ter index (S7), number of observations (L), observed data (Qps), computed values
(Qcom), mean of observed data (Q ), respectively. A R? 0f 0.9 or more is considered
very satisfactory, 0.8 to 0.9 represents a fairly good model, and less than 0.8 is con-
sidered unsatisfactory (Dawson & Wilby, 2001).

Results and discussion

ANN and MLR model results

The results of all models are presented in Tables 4-7. It can be seen from
Tables 4-7 that in comparison with MLR models, the ANN model has performed
better for all lead times, except for the fourteen-day one. It is observed that the effec-
tiveness of both models decreases while increasing lead time. This could be due to
considerable fluctuations in the data around mean values, such as a high standard
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deviation. Tables 4—7 also indicates the optimal ANN structure (e.g. for a two-day
lead time, 2-8-1 means two neurons in the input layer, eight neurons in the hidden

layer, and one neuron in the output layer).

TABLE 4. Values of statistical parameters for two-day lead time

Optimum
Model type Training period Testing period ANN
structure
RMSE R? MAE BIAS SI RMSE R? MAE  BIAS SI -
ANN 1764.66 0977 104428 1.002 0.109 2463.33 0.960 1401.83 1.014 0.152 2-8-1
MLR 182826 0.976 1058.12 1.000 0.113 253596 0.958 1293.19 1.000 0.156 -
WANN-db1/5  1199.43 0.989 757.47 1.008 0.074 179599 0.979 114451 1.018 0.110 12-2-1
WMLR-dbl1/5 122825 0989 680.19 1.000 0.076 1758.64 0980 913.41 1.000 0.109 -
‘WANN-db2/4 960.30 0.993 540.14 1.001 0.059 141536 0987 796.43 1.007 0.087 10-2-1
WMLR-db2/5  1093.66 0.991 595.74 1.000 0.068 1478.74 0.986 769.43 0.999 0.091 -
WANN-db3/4 813.84 0.995 469.56 1.001 0.050 1202.33 0990 698.70 1.007 0.074  10-3-1
WMLR-db3/5 909.81 0.994 510.23 1.000 0.056 1311.38 0.989 629.76 0.999 0.081 -
‘WANN-db8/5 553.07 0998 36893 1.000 0.034 1054.10 0.992 54392 1.000 0.065 12-2-1
WMLR-db8/5 526.83  0.998 296.78 1.000 0.033 775.11 0996 40620 0.999 0.048 -
WANN-db10/5  481.40 0.998 298.51 0.999 0.030 933.06 0.994 43649 0999 0.057 12-2-1
WMLR-db10/5 47199 0.998 261.79 1.000 0.029 751.87 0.996 369.69 1.000 0.046 -
Note: MAE and RMSE are m®-s™" unit (Results of only optimum decomposition level are shown).
Source: own elaboration.
TABLE 5. Values of statistical parameters for four-day lead time
Training period Testing period Optimum
Model type ANN
RMSE R? MAE BIAS SI RMSE R? MAE  BIAS S1 structure
ANN 3133.09 0.929 2067.41 1.005 0.194 3890.35 0.901 2566.07 1.031 0.239 4-8-1
MLR 3136.83 0.929 1988.84 1.000 0.194 3932.06 0.899 2274.72 1.000 0.243 -
WANN-db1/5 191822 0973 1229.16 1.008 0.118 2590.84 0956 1717.58 1.018 0.159 24-3-1
WMLR-db1/5 2088.67 0.968 1268.59 1.000 0.129 2909.44 0.945 1618.86 1.000 0.179 -
WANN-db2/5  1431.04 0985 868.66 1.001 0.088 198638 0.974 113720 1.009 0.122  24-2-1
WMLR-db2/4 192249 0.973 1160.03 1.000 0.119 2342.13 0964 1354.14 0.999 0.144 -
WANN-db3/5  1280.06 0.988 790.25 1.001 0.079 1683.59 0982 103497 1.004 0.104 24-2-1
WMLR-db3/5 152875 0.983 92438 1.000 0.094 2067.67 0972 1084.63 0.999 0.127 -
WANN-dbg/4 962.64 0993 601.76 1.001 0.059 146535 0986 774.11 1.000 0.090 20-2-1
WMLR-db8/5 940.03 0.994 556.62 1.000 0.058 1213.32 0990 66447 0.999 0.075 -
WANN-db10/5  822.67 0.995 527.85 1.003 0.051 1477.12 0986 755.19 1.004 0.091 24-2-1

WMLR-db10/5 78537 0.995 460.22 1.000 0.048 117480 0.991 612.69 1.000 0.072

Note: MAE and RMSE are in m*-s™! unit (Results of only optimum decomposition level are shown).

Source: own elaboration.
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TABLE 6. Values of statistical parameters for seven-day lead time

Training period Testing period Optimum

Model type ANN

RMSE R? MAE BIAS S1 RMSE R? MAE  BIAS N structure
ANN 4308.72 0.866 2801.05 1.002 0.266 518533 0.825 344199 1.032 0318 4-3-1
MLR 449092 0.854 2986.84 1.000 0.277 5376.87 0.811 3429.75 0.999 0.331 -
WANN-db1/5 2830.19 0942 1961.30 1.004 0.175 4131.69 0.889 294238 1.016 0254  24-3-1
WMLR-db1/5 3122.62 0929 194273 1.000 0.193 4123.65 0.889 241544 0.999 0.254 -
WANNdb2/5 2038.56 0.970 1408.02 1.004 0.126 2894.02 0.945 1927.13 1.024 0.178  24-2-1
WMLR-db2/5  2623.55 0.950 1617.63 1.000 0.162 3193.40 0933 1937.76 0.999 0.196 -
WANN-db3/5 1683.52 0979 115142 1.003 0.104 252532 0958 1639.74 1.013 0.155 24-3-1
WMLR-db3/5  2129.55 0.967 133634 1.000 0.132 2987.57 0.942 1640.06 0.999 0.184 -
WANN-db8/5 1313.63 0987 87191 0999 0.081 203833 0973 123397 0.997 0.125 24-2-1
WMLR-db8/5 1318.74 0.987 837.08 1.000 0.082 170296 0.981 1042.41 0.999 0.105 -
WANN-db10/5 1187.51 0.989 792.06 0.999 0.073 1929.58 0.975 1060.01 1.005 0.119 24-2-1
WMLR-db10/5 1167.65 0.990 733.49 1.000 0.072 158502 0984 881.76 1.000 0.097 -
Note: MAE and RMSE are in m*-s™! unit (Results of only optimum decomposition level are shown).
Source: own elaboration.
TABLE 7. Values of statistical parameters for 14-day lead time

Training period Testing period Optimum

Model type ANN

RMSE R? MAE BIAS S1 RMSE R? MAE  BIAS SI structure
ANN 570497 0.765 4035.67 1.014 0.353 708421 0.673 511637 1.068 0.433 4-2-1
MLR 458437 0.848 3204.37 1.000 0.283 5415.77 0.809 363094 0.999 0.333 -
WANN-db1/5 4173.09 0874 276527 1.007 0.258 4913.55 0.843 342592 1.036 0300 24-4-1
WMLR-db1/5 4761.19 0.836 321526 1.000 0.294 605048 0.762 3886.88 0.999 0.371 -
WANN-db2/5 307196 0.932 2062.78 1.004 0.190 471630 0.855 3017.38 1.038 0.288  24-3-1
WMLR-db2/5  4037.44 0.882 2571.67 1.000 0249 4876.84 0.845 310941 0.999 0.299 -
WANN-db3/5 242095 0958 1737.07 1.014 0.149 3848.56 0904 2663.88 1.031 0235 24-2-1
WMLR-db3/5 3172.17 0927 2083.46 1.000 0.196 477031 0.852 2694.26 0.999 0.292 —
WANN-dbS/5 192274 0.973 1353.08 1.012 0.119 3746.15 0.908 219053 1.020 0229 24-2-1
WMLR-db8/5 1985.33 0971 132519 1.000 0.123 2612.09 0.955 1731.46 0.999 0.160 -
WANN-db10/5 222574 0.964 1600.63 0.995 0.138 3539.60 0918 2287.83 0.986 0217 24-3-1

WMLR-db10/5 167031 0.979 1137.67 1.000 0.103 2196.46 0.968 143557 1.000 0.134

Note: MAE and RMSE are in m*-s™! unit (Results of only optimum decomposition level are shown).

Source: own elaboration.
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WANN and WMLR model results

The normalized observed data was decomposed using Daubechies wavelets of
order 1 (dbl), 2 (db2), 3(db3), 8 (db8) and 10 (db10) up to fifth level decomposition,
which were fed as input to ANN and MLR, making the models as WANN(dbN/i)
and WMLR(dbN/), respectively, where N is the order of Daubechies wavelet
and 7 is decomposition level. The performances of these hybrid models only for
best decomposition level (low RMSE) are presented in Tables 4—7. Results of
Tables 4—7 show that wavelet-based hybrid models perform significantly better
than the standalone model.

Effect of Daubechies wavelet order on model efficiency

TABLE 8. Percent improvement in After comparing the results of hybrid models
RMSE with increase in wavelet order  yith respect to wavelet order, it was observed that
from db1 to db10 s . .. . .

all models’ efficiency is increasing with wavelet
order, highest being at 10" order. For example, for

Lead time Improvement in RMSE

[dZY] 5[7%2]5 four-day lead time (during testing period), from
2 P 4: o6 the Table 4 it was found that for WANN model the
7 61.56 value of R? increased from 0.956 (WANN-db1/5)
14 5530 to 0.986 (WANN-db10/5) and for WMLR model

the increase is from 0.945 (WMLR-db1/5) t0 0.991
(WMLR-db10/5). Similar trend was observed for
all lead times. Table 8 shows percent improvement in RMSE values with increase in
Daubechies wavelet order from dbl to db10. The average percent improvement in
RMSE is found to be 57.19%. Figure 6 shows a sample plot of effect of Daubechies
wavelet order on RMSE for four-day lead time.

In general, for all lead times, from the analysis it was found that for lower
order wavelets (dbl, db2, db3), WANN model performance was better as com-
pared to the WMLR model, while for higher order wavelets (db8, db10), WMLR
was found to be superior as compared to WANN. A careful study of Tables 4-7
reveals that the forecasting ability of each hybrid model improves with increas-
ing wavelet order. According to the observed time series flow data (Fig. 2),
it appears to occur in a high frequency during the monsoon season (June to
September, i.e. four months out of the year) and in a low frequency during the
other non-monsoon eight months. Wider-support wavelets can capture low fre-
quencies, while wavelets with a smaller support can capture high frequencies.
The support width of a Daubechies wavelet of order N is equal to 2N — 1 (Misiti

Source: own elaboration.
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et al., 2010), hence the support widths of db1, db2, db3, db8, and db10, wavelets
are one, three, five, 15, and 19, respectively. In brief, compared to dbl, db2,
db3, and db8 wavelet-based forecast models, the db10 wavelet has a reasonable
support and good time-frequency localization properties, which together allow
the model to capture both the underlying trend and the short-term variations in
the time series. This conclusion is consistent with the findings of (Nourani et
al., 2013; Katipoglu, 2023b, 2023¢), who demonstrated that higher order mother
wavelet (db4 and db10) offered substantially better results than lower order Haar
(db1) wavelet. Scatter plots for all lead times for best model [WMLR(db10)]
are shown in Figure 7. The scatter plots showed that the majority of the points
were quite close to the 45° line, with only a few having greater magnitudes of
observed flow on the lower side, indicating model underestimate (BIAS slightly
below 1.0). WMLR(db10) models performance was very satisfactory (R> > 0.9)
(Dawson & Wilby, 2001) for all lead times. Time series plots are shown in Figure
8 for all lead times.

As mentioned earlier, the optimum decomposition level was determined using
the formula / = int [log (L)]. In our study, we decomposed raw signal up to
fifth level. For the best model WMLR(db10), the effect of decomposition level
on R? is presented in Table 9. A careful examination of Table 9 demonstrates
that model efficiency enhances with decomposition level. The initial resolution
level of the original time series captures the high frequency components, and
as the decomposition level (scale) is increased, the signal becomes smoother
and more stationary. As a result, prediction errors were not affected by scale.
Figure 9 shows effect of decomposition level on R? for WMLR(db10) model for
all lead times.

TABLE 9. Effect of decomposition level on determination coefficient (R?) for WMLR-db10 model
(testing period)

Two-day lead time Four-day lead time Seven-day lead time 14-day lead time

Model type R? Model type R? Model type R? Model type R?

WMLR-db10/1  0.976 ~WMLR-db10/1 0914  WMLR-db10/1  0.824 WMLR-db10/1  0.656

WMLR-db10/2  0.995 WMLR-db10/2 0966 ~ WMLR-db1022  0.861 WMLR-db10/2 0.684

WMLR-db10/3  0.996  WMLR-db10/3  0.990 WMLR-db10/3  0.967 WMLR-db10/3  0.760

WMLR-db10/4  0.996 WMLR-db10/4  0.991  WMLR-db10/4 0983 WMLR-db10/4  0.953

WMLR-db10/5  0.996  WMLR-db10/5 0.991  WMLR-db10/5  0.984 WMLR-db10/5  0.968

Source: own elaboration.
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FIGURE 9. Effect of decomposition level on determination coefficient (R%) for WMLR(db10) model
Source: own elaboration.

Analysis of results for monsoon season during testing period

Finally, because the Brahmaputra river carries substantial flood during the mon-
soon season (June to September), an attempt was made to assess the model’s accu-
racy during the monsoon period (for three years in testing from 1997 to 1999) for

TABLE 10. Values of statistical parameters for WMLR(db10) model for monsoon season (June to
September) in testing period

Year RMSE R? MAE BIAS S.1
Two-day lead time

1997 890.55 0.995 596.966 1.000 0.034

1998 1 448.88 0.995 767.802 0.999 0.042

1999 1070.20 0.996 629.899 0.999 0.034
Four-day lead time

1997 1572.65 0.984 1072.41 1.000 0.059

1998 2188.39 0.989 1153.71 0.999 0.063

1999 1514.68 0.992 968.89 0.998 0.048
Seven-day lead time

1997 2243.79 0.967 1 667.90 0.998 0.084

1998 2971.27 0.980 1677.60 1.001 0.086

1999 1797.46 0.989 1209.73 0.999 0.058

14-day lead time

1997 3035.86 0.938 229243 1.002 0.115

1998 372221 0.967 2295.27 1.006 0.111

1999 2588.93 0.976 1972.25 0.998 0.084

Note: RMSE and MAE are in cumec unit.

Source: own elaboration.
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the WMLR(db10) model. The statistical parameter values for the WMLR(db10)
model during testing period of monsoon season are shown in Table 10. As shown in
Table 10, the WMLR(db10) model demonstrated good performance during monsoon
season producing extremely satisfactory results for all lead times, despite substantial
non-stationarity. Figure 10 compares flow series between observed, WMLR(db10)
and WANN(db10) modelled flow for monsoon season for two-day lead time. From
Figure 10 it is clear that the WMLR(db10) model has captured well almost all peaks,
except the highest.

90 000
s0000 | Leadtime:2day =777 Observed
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50 000
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30 000
20 000
10 000

0

Discharge (cumec)

A ST BN o o T e Y e T A N o T B A B ) S . B R e B A SR AN o 0 B ol 0 B\ B s T S B @ B
— = AN AN AN NN T NN O OO0 NN OO

—_ = = = =

Time in days in monsoon season (June 1998 to Sept 1998)

FIGURE 10. Flow series comparison between observed, WMLR(db10) and WANN(db10) modelled
flow for monsoon season

Source: own elaboration.

Conclusions

In this study, hybrid models were created by coupling wavelet transform with
ANN and MLR to predict the Brahmaputra River flow at Pancharatna station for
two-, four-, seven-, and 14-day lead time using 10-year daily flow data. Daubechies
wavelets dbl, db2, db3, db8, and db10 were used to decompose the observed raw
flow data up to fifth level, which were used as input to ANN and MLR. After com-
paring the results of WANN and WMLR models with respect to wavelet order, it was
found that both hybrid models’ efficiency is increasing with wavelet order, highest
being at 10" order. Comparing the hybrid models’ outcomes, it was discovered for
all lead times that the WMLR-db10 model had produced more reliable and superior
results than the WANN model. The average percent improvement in RMSE with
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increase in wavelet order from one to 10 was found to be 57.19%. Also, it was
concluded that with increase in the decomposition level the model’s efficiency was
increased. Finally, it was concluded that the wavelet transform as a preprocessing
tool has proved to be best for mapping the relation between input and output as
compared to a single model. To evaluate the forecasting effectiveness of suggested
wavelet coupled hybrid models, other hydrological time series variables, such as
rainfall, temperature, and evapotranspiration, can be employed as model inputs.
To investigate more accuracy, the work can be expanded with additional wavelet types.
Study can further be applied at other stations with highly non-stationary data.
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Summary

Hybrid wavelet transform — MLR and ANN models for river flow prediction: Case
study of Brahmaputra river (Pancharatna station). In this research, discrete wavelet
transform (DWT) is combined with MLR and ANN to develop WMLR and WANN hybrid
models, respectively, for the Brahmaputra river (Pancharatna station) flow forecasting.
Daily flow data for the period of 10 year were decomposed (up to fifth level) into detailed
and approximation coefficients (using Daubechies wavelets dbl, db2, db3, db8 and db10)
which were fed as input to MLR and ANN to get the predicted discharge values two days,
four days, seven days and 14 days ahead. For all lead times, the WMLR-db10 model was
found to be superior as compared to WANN-dbl, WANN-db2, WANN-db3, WANN-db8,
WMLR-db1l, WMLR-db2, WMLR-db3, WMLR-db8 and single MLR and ANN mod-
els. During testing period, the values of determination coefficient (R*) and RMSE for
WMLR-db10 model for two-, four-, seven- and 14-day lead time were found to be, respec-
tively, 0.996 (751.87 m>s™), 0.991 (1,174.80 m*-s™!), 0.984 (1,585.02 m>-s™!), and
0.968 (2,196.46 m*-s™!). Also, it was observed that for lower order wavelets (db1, db2, db3)
WANN'’s performance was better, and for higher order wavelets (db8, db10) WMLR’s per-
formance was better. Correspondingly, it was observed that all hybrid models’ efficiency
increased with increase in the decomposition level.



