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INTRODUCTION 

Contemporary management of peatlands requires documentation of their current state to 
serve as a baseline for future evaluations within an adaptive management approach (United 
Nations Environment Programme [UNEP], 2022). One critical aspect of this documentation is 
assessing greenhouse gas (GHG) fluxes. There is a pressing global demand for accurate 
estimates of GHG emissions from peatlands to inform management strategies and enhance 
decision-making processes. This need is underscored by the challenges associated with 
implementing policies such as the recently enacted EU Nature Restoration Law (European 
Commission [EC], 2022), which calls for measures that incentivize farmers to mitigate 
GHG emissions from drained peatlands by raising groundwater levels (GWL) on their lands 
(Liu et al., 2023). Rewetting is usually the first step in the restoration process of peatlands 
(Grand-Clement et al., 2015), as all the other elements and functions are dependent on the 
presence of water (Jones et al., 2018). Accurate GHG emission data is crucial for providing 
indicators of the effectiveness of rewetting activities (Nielsen et al., 2023). This is especially 
important for determining appropriate subsidies based on the activities undertaken by farmers. 
However, direct measurement of GHG fluxes is often unfeasible due to the high costs, time, 
and specialized personnel required (Cieśliński, 2024). As a result, there is a growing demand 
for alternative, simplified methods of estimating GHG emissions from drained peatlands. 

Peatlands’ GWL is recognized as the most informative proxy for GHG emissions 
(Tanneberger et al., 2024). It was found to be the most sensitive and influential factor affecting 
gas fluxes, with even minor changes in GWL (on the order of centimeters) capable of causing 
significant variations in carbon dioxide emissions (Tiemeyer et al., 2020; Evans et al., 2021; 
Koch et al., 2023). Yet, measuring the GWL also requires field inspections, and obtaining 
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multi-year average GWL data to assess the status or pre- and post-rewetting differences is 
equally costly, time-consuming (Ghazaryan et al., 2024) and requires meticulous planning of 
the location of monitoring wells. Therefore, developing a method for predicting the GWL in 
peatlands using readily available, long-term datasets, such as those derived from remote 
sensing, is essential. 

Various remote sensing data types and sources are widely used in peatland monitoring 
(Harris & Bryant, 2009; Lees et al., 2018; Millard et al., 2018; Food and Agriculture 
Organization of the United Nations [FAO], 2021; Habib & Connolly, 2023; Ghezelayagh et al., 
2024). However, no universally applicable and accurate tool or methodology has been 
implemented to assess GWL in peatlands globally. The choice of remote sensing datasets 
depends on the specific parameters that need to be monitored, as some can also be used for 
vegetation or soil moisture monitoring. Several options are available for soil moisture, which 
is strongly connected to GWL (Irfan et al., 2020). It is important to note that regional-scale 
peatland monitoring requires data with high spatial resolution. Therefore, datasets such as 
NASA’s soil moisture active passive (SMAP) instrument, with a spatial resolution of 36 km, 
are unsuitable. Synthetic aperture radar (SAR) has proven to be a valuable tool in land 
monitoring, particularly in forestry and agriculture. Dual-polarized radar backscatter, which is 
sensitive to soil moisture content, can thus help predict the GWL in peatlands (Kim et al., 2017; 
Lees et al., 2021). Consequently, this data can be effectively integrated as input into predictive 
models, such as Bayesian belief networks. 

The Bayesian belief network (BBN) is a probabilistic model in the form of a directed acyclic 
graph (DAG) that defines conditional dependencies between variables using Bayes’ theorem 
(Neapolitan, 2007; Liu et al., 2016). The network consists of nodes representing model 
variables and arcs, which determine the nodes’ influence on each other (Henriksen et al., 2007; 
Rao & Rao, 2014). It provides a range of possible outcomes with a certain level of uncertainty 
in the form of conditional probabilities (Rohmer, 2020). These results can also be presented as 
conditional probability tables. Bayesian networks are used in many fields, including 
environmental studies, and they are helpful in decision-making in environmental management 
(Marcot & Penman, 2019). 

In this paper, we apply the BBN approach to estimate the GWL in peatlands using remote 
sensing. The study is based on data from the Biebrza National Park area (BbPN; NE Poland), 
which has a long history of GWL monitoring in natural and drained peatlands (Kardel et al., 
2009). This allows the use of multi-year mean GWLs as input to the model together with 
multi-year remote sensing imagery, including data derived from SAR (backscatter coefficient) 
and InSAR (vertical peat displacement), to build a BBN capable of predicting the occurrence 
of specific GWLs in peatlands. The main goal of developing the model is to create cost-effective 
monitoring options in peatlands that currently lack monitoring infrastructure and long-term 
data. Our hypothesis is that the approach involving the use of BBN alongside remote sensing 
can serve this purpose. 

MATERIAL AND METHODS 

Study area 

Biebrza National Park (BbPN) is located in north-eastern Poland, in the Biebrza river valley 
(Fig. 1). The entire BbPN area (59,233 ha) was nominated as a Ramsar site in 1995, recognizing 
its significance as one of the most extensive floodplain and peatland complexes in Central 
Europe. Despite the relatively well-preserved state of the Biebrza marshes, which support 
a high diversity of flora and fauna, the area has experienced considerable anthropogenic 
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pressure, particularly from agricultural activities (Okruszko & Byczkowski, 1996). Extensive 
drainage projects in the 19th and 20th centuries, comprising the construction of major canals 
such as the Woźnawiejski Canal and Rudzki Canal and drainage ditches (with a total length of 
approx. 540 km), have led to the significant lowering of groundwater levels in surrounding 
peatlands, contributing to their degradation (Stachowicz et al., 2023). Restoration efforts began 
in the second half of the 20th century.  
 

 
Figure 1. Map of the Biebrza National Park with hydrological network and locations of the 
piezometers 
Source: own work. 
 

The study area within BbPN offered a representative sample of various mire and peatland 
types, including bogs, fluviogenous and topogenous mires, and drained and restored peatlands. 
For the terminology of mires and peatlands, please refer to e.g. Joosten and Clarke (2002). 
The Biebrza valley is in a temperate continental climate zone, with mean annual air 
temperatures varying between 6.6°C and 9.0°C, an average annual sum of precipitation of 561 
mm in the period 1951–2021, and – interestingly – a predominantly negative multi-year water 
balance (Venegas-Cordero et al., 2024). 
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Input data 
 
Groundwater levels 
 

Groundwater data were obtained from a network of piezometers installed at various locations 
across BbPN, either alone or arranged in transects. Each piezometer was equipped with an 
automatic water level logger. Data collection began in 1994 in some places, while others had 
shorter recording periods (with the shortest being 4 years and an average of 18 years). Detailed 
information about the piezometers can be found in Supplementary Material A. This study 
analyzed data from 32 piezometers in the middle Biebrza basin, 4 in the upper Biebrza basin, 
and 10 in the lower Biebrza basin. The data from all 45 selected piezometers were used for 
model training. The GWL values used in the study were multi-year averages from each 
piezometer. The locations of the piezometers are shown in Figure 1. Each piezometer used for 
model training was assigned to a specific GWL class to construct the Bayesian network. 
The classes were developed based on studies by Tiemeyer et al. (2020) and Koch et al. (2023), 
which revealed a relationship between GHG emissions and peatland GWLs. It was found that 
the reduction of GHG emissions is expected to occur for groundwater at a depth of 0.40 m. 
Emissions are stable below this depth (for deeper GWLs), but changes are dynamic above it 
until the GWL reaches the surface. Based on this, the GWL was divided into six classes: below 
−0.4 m, four intervals of 0.1 m between −0.4 m and 0.0 m (surface level) and above surface 
level (Table 1).  
 
Table 1. Classification of parameters used in the Bayesian network modela 
Parameter Class Value 

Groundwater level [m] 

C1 < −0.4 
C2 −0.4 to −0.3 
C3 −0.3 to −0.2 
C4 −0.2 to −0.1 
C5 −0.1 to 0.0 
C6 > 0.0 

SAR backscatter coefficient (σ°) [dB] 
SAR1 < −18 
SAR2 −18 to −16 
SAR3 > −16 

Peat subsidence rate [m⋅year−1] 
Subs1 −0.05 to −0.02 
Subs2 −0.02 to −0.01 
Subs3 −0.01 to 0.05 

Distance to the watercourse [m] 

D1 0 to 25 
D2 25 to 100 
D3 100 to 440 
D4 > 440 

aThe rationale behind the class intervals of remote sensing parameters is explained in subsequent subsections. 
 

Source: own work. 
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Synthetic aperture radar backscatter coefficient  
 

The Copernicus Sentinel-1’s C-band SAR imagery data, expressed in decibels (dB) as the 
backscatter coefficient (σ°), was among the remote sensing parameters utilized for the model’s 
training. This data was chosen because it is sensitive to soil moisture content, making it relevant 
for estimating groundwater levels (Asmuß et al., 2018; Bechtold et al., 2018; Räsänen et al., 
2022). The SAR imagery used in the model was a multi-year average derived from images 
captured between 1 January 2015 and 8 July 2024, processed in Google Earth Engine. A total 
of 3,281 images were utilized to create the mean raster of the SAR backscatter coefficient. 
All images were pre-processed using the Sentinel-1 Toolbox – S1TBX (Veci et al., 2012), 
which included thermal noise removal, radiometric calibration, and terrain correction. 
The image collection used in the study was captured in interferometric wide (IW) swath mode, 
providing a high resolution of 10 m and a swath width of 250 km.  

VH polarization was selected for the study, as the relationship between σ° and in-situ 
measured GWL was tested with both VH and VV polarizations, and Spearman’s rank 
correlation coefficient (ρ) indicated a better correlation with VH (−0.818 vs. −0.762). 
The Spearman’s rank correlation test was selected due to the GWL data’s deviation from 
a normal distribution. The analysis revealed that a lower backscatter coefficient corresponds 
to a shallower GWL (Fig. 2). The values of the backscatter coefficient were categorized into 
three classes, as shown in Table 1. This classification was based on the data distribution in the 
peatlands, where the backscatter coefficient ranged from −21 dB to −14 dB. 
 

 
Figure 2. Correlation between synthetic aperture radar backscatter coefficient and groundwater 
level (gray line represents the regression line; gray area represents the confidence interval of 
95%; linear model equation: y = −0.08x + −1.66) 
Source: own work. 
 
 
Peat subsidence rate  
 

The peat subsidence (vertical displacement) rate, a remote sensing-derived parameter 
correlated with GWL, was also utilized in the model. The decline in GWL, leading to increased 
soil respiration, has been identified as a primary factor contributing to the acceleration of 
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subsidence rates (Ma et al., 2022). The subsidence data were obtained from the study by 
Ghezelayagh et al. (2024), which employed the InSAR technique to measure the vertical 
displacement of the peat surface within the BbPN area. Changes in peat surface elevation using 
InSAR are estimated based on InSAR coherence, which is the correlation between two 
subsequent SAR images (Abdel-Hamid et al., 2021; Hrysiewicz et al., 2024) and can provide 
centimeter to millimeter precision (Hoyt et al., 2020). This parameter was categorized into three 
intervals: −0.05 to −0.02 m⋅year−1, −0.02 to −0.01 m⋅year−1 and −0.01 to 0.05 m⋅year−1 
(Table 1). 
 
Distance to watercourses (ditches, canals, rivers) 
 

The third parameter used to build the BBN was the distance to ditches, canals, or rivers. 
These data were compiled from digitized vector layers of watercourses within the BbPN and 
created through orthophoto mapping and field verification. The classification of this parameter 
was based on the meta-analysis by Bring et al. (2022), who identified specific thresholds for 
the impact of drainage on a peatland’s GWL. The study indicated that the effect of ditching on 
the GWL diminishes by 50% at a distance of 21 m and by 75% at 97 m relative to the immediate 
vicinity of the ditch. Moreover, the drainage effect is negligible beyond approximately 440 m. 
For the model, four distance classes were established based on the findings of this study, 
as outlined in Table 1. 
 
Data processing, building Bayesian network and statistical analyses 
 

All data were pre-processed in the ArcGIS 10.7.1 software. The remote sensing data, 
provided as raster layers, were spatially extracted to each point feature corresponding to the 
piezometer locations and their associated multi-year GWL records. The extracted values were 
subsequently classified according to the categories outlined in Table 1. This classification was 
a critical step, as BBNs utilize conditional probability tables, which are more effectively 
managed with discrete variables (Cobb et al., 2007). The BBN was built in GeNIe Academic 
Version 4.1 (BayesFusion, LLC) by learning the parameters. The network graphs presenting 
example results were exported from Netica 7.01 (Norsys Software Corp). The network structure 
was designed as depicted in Figure 3, where the remote sensing data serve as parent nodes, and 
the GWL acts as the child node. This configuration allows the model to estimate the probability 
of a specific GWL class occurring based on the provided remote sensing parameters. The model 
was trained using data from the whole Biebrza basin area. 
 

 
Figure 3. Conceptual model of the Bayesian belief network 
Source: own work. 
 

The Bayesian belief network’s probability results were analyzed using Microsoft Excel and 
RStudio Version 2023.12.0+369 (R Core Team, 2023). The packages used included ‘caret’ 
(Kuhn, 2008), ‘ggplot2’ (Wickham, 2016) and ‘Metrics’ (Hamner & Frasco, 2018). Unlike 
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deterministic models, a BBN estimates the probability distribution of potential outcomes rather 
than predicting exact values. Due to limited data availability, two approaches for network 
validation were applied. The first approach involved creating 12 random polygons of 100 ha 
(Fig. 4A), each covering at least two piezometers, to calculate the mean GWL within each 
extent. The area percentage contribution of each model parameter class was then determined 
within each polygon. The second validation approach used 26 BbPN plots (cadaster-based, real 
parcels) with areas ranging from 0.9 ha to 450 ha, with an average of 42 ha (Fig. 4B). In the 
case of the BbPN plots, the GWL value for each plot was derived from either one piezometer 
or an average of several piezometers located within the polygon, depending on the number of 
piezometers intersecting the plot. Then, the percentage contribution of each model variable 
class (SAR backscatter coefficient, peat subsidence rate, and distance to watercourses) was used 
as an input in the Bayesian belief network to generate conditional probabilities of different 
classes of GWL. The class with the highest probability (referred to as a prediction or predicted 
class later in this study) was then compared with the class of the mean observed GWL at each 
polygon/plot. However, it should be stressed that the prediction from the model is not 
a deterministic value and is only one from the possible set of outcomes. 

The model’s performance was assessed using a confusion matrix and predictive accuracy. 
The confusion matrix summarizes the model performance by comparing the predicted and 
actual classes and is a valuable tool for validating probabilistic models in classification tasks 
(Chen & Pollino, 2012; Marcot, 2012). The predictive accuracy was calculated as the ratio of 
correct predictions to the total number of predictions. Additionally, a sensitivity analysis, 
as sensitivity to findings specific to Bayesian networks (Rositano et al., 2017), was performed 
to determine which model variables had the most significant influence on the GWL prediction. 
The indicator used for the sensitivity analysis was entropy reduction, with entropy being 
a measure of uncertainty of variables (Villaverde et al., 2014). 

 

 
Figure 4. Maps showing 100-hectare polygons (A) and the Biebrza National Park plots (B) with 
a synthetic aperture radar backscatter coefficient raster layer as a background 
Source: own work. 
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Statistical independence of model variables 
 

The statistical independence of the model variables was evaluated. The Shapiro–Wilk test 
assessed whether the datasets conformed to the normal distribution assumption. The findings 
indicated that the SAR backscatter coefficient and distance to the watercourse data deviated 
from a normal distribution (p-value < 0.05), necessitating the application of the Spearman’s 
rank correlation coefficient to investigate the independence of the variables. The Spearman’s 
rank correlation coefficient (ρ) was −0.11 between SAR backscatter and subsidence, with 
 a p-value of 0.47, indicating that there is no significant association between the variables in 
the dataset. Similarly, the test showed no correlation between SAR backscatter and distance 
to the watercourses (ρ = 0.11; p-value = 0.45) and between subsidence and distance (ρ = −0.03; 
p-value = 0.82), thus making these variables suitable to be used in the BBN approach (Table 2). 
 
Table 2. Spearman’s rank correlation results between model variables 

Pair of compared model variables 
Spearman’s rank 

correlation parameters 
ρ p-value 

Synthetic aperture radar backscatter coefficient–subsidence −0.11 0.47 
Synthetic aperture radar backscatter coefficient–distance to the 
watercourses 0.11 0.45 

Subsidence–distance to the watercourses −0.03 0.82 
Source: own work. 
 
 
RESULTS  
 

The model’s conditional probability table (CPT) generated 36 possible combinations of 
remote sensing classes. However, due to limited data, some combinations are not present in the 
model. Therefore, the model was tested using two approaches, as described in the “Data 
processing, building Bayesian network and statistical analyses” subsection. The percentage 
contributions of the model variables’ classes were calculated for each polygon and BbPN plot 
used for validation (Table 3). Based on these contributions, the distribution of probabilities of 
the occurrence of GWL classes was generated (Table 4). The BBNs for one 100-hectare 
polygon (Polygon 9) and one BbBN plot (Plot 26) selected randomly are shown in Figure 5 to 
present how the results are generated. Belief bars visually represent conditional probabilities on 
the BBN, which reflect the likelihood of different outcomes for the child node based on the 
contributions of the model parameters. In Polygon 9, the presented percentage contribution of 
the model parameters’ classes indicates that the GWL in class C5 (with a 58.2% probability) is 
most likely to occur within its boundaries. The probabilities of the GWL falling into classes C1, 
C2, C3, C4 and C6 are 6%, 10.3%, 5.5%, 15% and 5%, respectively. In Plot 26, the GWL in 
class C2 is most likely to occur (with a 50.3% probability). The probabilities for the GWL being 
in classes C1 and C3 are 23.9% and 11.7%, respectively. Additionally, the probability of the 
GWL being in classes C4, C5, and C6 is 4.7% for each.  
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Table 3. Area percentage contributions of each model variables class in polygons and plots used 
for validation 

V.m. No Area 
[ha] 

Avg. 
obs. 

GWL 
[m] 

SAR backscatter 
coefficient class 

distribution 
[%] 

Subsidence class 
distribution 

[%] 

Distance to the watercourse 
class distribution  

[%] 

1 2 3 1 2 3 1 2 3 4 

Po
ly

go
n 

1 100 −0.364 48.3 21.9 29.8 21.7 60 18.3 0 4 53.4 42.6 
2 100 −0.293 3.5 26.7 69.8 0.6 31.4 68 0 0 0 100 
3 100 −0.391 6.6 11.9 81.5 64.3 34.6 1.1 3.6 10.4 71.6 14.4 
4 100 −0.314 30.1 41.0 28.9 17.1 76 6.9 0 0 0 100 
5 100 −0.309 23.2 22.8 54.0 11.1 57.2 31.7 0 0.7 35.3 64 
6 100 −0.332 29.6 4.4 66.0 52.9 44.8 2.3 5.8 13.5 40.4 40.3 
7 100 −0.001 96.0 4.0 0.0 24.3 65.6 10.1 10.6 23.4 66 0 
8 100 −0.006 79.9 10.3 9.8 11 55.9 33.1 15.5 41.2 43.3 0 
9 100 −0.004 81.5 13.6 4.9 63.3 35.6 1.1 0 0 3 97 

10 100 −0.002 48.6 46,0 5.4 22.6 60.5 16.9 0.3 1.7 25.9 72.1 
11 100 −0.109 79.8 6.6 13.6 22.6 65.2 12.2 0 0 14.1 85.9 
12 100 −0.012 96.7 3.3 0.0 34.6 61.5 3.9 4 10.8 42.4 42.8 

B
bP

N
 p

lo
t 

1 5.72 −0.002 64.6 27.4 8 30 60 10 0 0 18.5 81.5 
2 4.75 −0.338 20.3 65.8 13.9 10 80 10 0 1.3 53.9 44.8 
3 1.41 −0.5 10.7 44.3 45 33.3 66.7 0 13.6 45.5 40.9 0 
4 0.92 −0.338 1.1 78.4 20.5 0 100 0 0 0 0 100 
5 1.74 −0.351 6.9 24.7 68.4 33.3 66.7 0 0 0 100 0 
6 1.73 −0.267 14.4 29.3 56.3 0 100 0 0 0 0 100 
7 7.21 0.001 100 0 0 33.3 41.7 25 22.5 25 52.5 0 
8 1.3 −0.002 100 0 0 0 33.3 66.7 4.8 19 76.2 0 
9 53.24 −0.304 19.3 56.1 24.6 1.1 47.8 51.1 0 0 0 100 

10 38.63 −0.001 29.2 50.7 20.1 32.8 61.2 6 3.3 10.2 52.6 33.9 
11 18.46 −0.003 76.7 23.3 0 9.1 63.6 27.3 0 0 0 100 
12 53.57 −0.287 6.8 47.8 45.4 0 18.7 81.3 0 0 0 100 
13 50.47 −0.314 2.6 46.9 50.5 18.9 71.1 10 0 0 0 100 
14 65.53 −0.514 12.3 9.9 77.8 53.8 43.4 2.8 3.6 9.8 52.8 33.8 
15 19.53 −0.247 0.7 73.6 25.7 5.7 80 14.3 0 0 0 100 
16 50.94 −0.333 19.4 20.3 60.3 9 64 27 0 0 8.8 91.2 
17 39.29 −0.372 4.7 10 85.3 57.1 42.9 0 2.1 8.9 76.1 12.9 
18 61.39 −0.062 50.6 22.4 27 4.6 55 40.4 2.4 8.9 54.4 34.3 
19 87.01 −0.005 87 10.1 2.9 31 65.2 3.8 2.3 7.5 50 40.2 
20 2.01 −0.023 100 0 0 33.3 66.7 0 3.1 15.6 81.3 0 
21 450.55 −0.001 90.3 5.2 4.5 44.3 51.1 4.6 2 4.8 21.4 71.8 
22 3.86 −0.001 100 0 0 28.6 71.4 0 0 0 0 100 
23 41.17 −0.001 86.5 10.7 2.8 13.7 64.4 21.9 21.9 47.7 30.4 0 
24 2.19 −0.001 50.9 12.7 36.4 0 66.7 33.3 14.7 50 35.3 0 
25 1.78 −0.001 44.3 19.9 35.8 0 66.7 33.3 14.3 35.7 50 0 
26 24.2 −0.320 0 1.2 98.8 53.5 41.8 4.7 0 0 48.1 51.9 

V.m. – validation method; Avg. obs. GWL – average observed groundwater level; SAR – synthetic aperture radar; BbPN –
Biebrza National Park. 
 

Source: own work. 
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Table 4. Conditional probabilities of groundwater level classes generated from the Bayesian 
belief network  

V.m. No 
Avg. 

obs. GWL 
[m] 

GWL class probability 
[%] GWL class 

C1 C2 C3 C4 C5 C6 Obs. Pred. 

Po
ly

go
n 

1 −0.364 10 28.5 10.6 6.95 37.8 6.05 C2 C5 
2 −0.293 5.96 22.5 52 5.83 7.85 5.82 C3 C3 
3 −0.391 20.8 50.8 7.07 5.87 9.66 5.79 C2 C2 
4 −0.314 7.38 39.1 14 6.76 27 5.73 C2 C2 
5 −0.309 10.6 34.4 20.8 6.52 21.4 6.19 C2 C2 
6 −0.332 16.9 35.4 9.91 7.63 23.4 6.77 C2 C2 
7 −0.001 6.94 8.55 7.25 6.94 59.7 10.6 C5 C5 
8 −0.006 8.67 12.6 9.17 7.98 48.8 12.8 C5 C5 
9 −0.004 6.02 10.3 5.52 15 58.2 4.99 C5 C5 
10 −0.002 7.03 29.1 10.5 8.04 38.8 6.51 C5 C5 
11 −0.109 6.17 13.5 8.09 7.99 59.4 4.89 C4 C5 
12 −0.012 5.74 7.16 5.88 8.61 65.6 6.98 C5 C5 

B
bP

N
 p

lo
t 

1 −0.002 6.68 21 8.24 8.87 49.5 5.71 C5 C5 
2 −0.338 7.9 50.4 9.52 6.23 19.9 6.05 C2 C2 
3 −0.500 14.2 34.2 16.6 9.9 14.7 10.4 C1 C2 
4 −0.338 5.26 67.8 10.4 5.26 6.08 5.26 C2 C2 
5 −0.351 20.6 56.2 4.64 4.64 9.24 4.64 C2 C2 
6 −0.267 4.57 52.3 18.6 4.57 15.4 4.57 C3 C2 
7 0.001 7.75 7.75 7.75 7.75 55.2 14.2 C6 C5 
8 −0.002 6.06 6.06 6.06 6.06 67.8 7.93 C5 C5 
9 −0.304 6.49 30.2 32.1 6.44 18.4 6.4 C2 C3 
10 −0.001 10.2 38.7 10.5 7.78 25.3 7.45 C5 C2 
11 −0.003 5.72 15.6 8.9 7.11 57 5.72 C5 C5 
12 −0.287 6.65 16.9 52.8 6.65 10.4 6.65 C3 C3 
13 −0.314 9.32 49.5 20.8 6.24 7.95 6.14 C2 C2 
14 −0.514 19.6 44.7 9.63 6.48 13.4 6.13 C1 C2 
15 −0.247 6.51 56 18.9 6.03 6.52 6.02 C3 C2 
16 −0.333 8.04 35.7 26.6 5.77 18.4 5.45 C2 C2 
17 −0.372 21.7 52.8 6.65 5.35 8.17 5.3 C2 C2 
18 −0.062 9.27 24.3 12.8 7.14 39 7.47 C5 C5 
19 −0.005 6.14 11.8 6.24 7.86 61.6 6.37 C5 C5 
20 −0.023 6.51 6.51 6.51 6.51 66.4 7.54 C5 C5 
21 −0.001 5.81 8.9 5.78 10.9 63 5.61 C5 C5 
22 −0.001 3.93 3.93 3.93 3.93 74.6 3.93 C5 C5 
23 −0.001 8.24 10.6 9.72 8.08 47.8 15.6 C5 C5 
24 −0.001 11.8 17.5 11.7 9.62 36.4 12.9 C5 C5 
25 −0.001 12.1 22 11.5 9.08 33.5 11.9 C5 C5 
26 −0.320 23.9 50.3 11.7 4.71 4.71 4.71 C2 C2 

V.m. – validation method; Avg. obs. GWL – average observed groundwater level; Obs. – observed; Pred. – predicted; BbPN 
– Biebrza National Park. 
 

Source: own work. 
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Figure 5. Example results from the Bayesian belief network: A – percentage contribution of 
model parameters in Polygon 9, B – percentage contribution of model parameters in Biebrza 
National Park Plot 26. Groundwater level node represents the results as a probability 
distribution of the occurrence of certain GWL classes 
Source: own work. 
 

The confusion matrices assessing the performance of the model for both sets of 100-hectare 
polygons and BbPN plots are shown in Figure 6. Diagonal elements on the matrix represent 
correctly predicted classes, while off-diagonal elements indicate misclassifications. Using 
100-hectare polygons as a validation set, 10 out of 12 predictions were correct, resulting in 
a prediction accuracy of 83.3% (Fig. 6A). Validating the network with a set of BbPN plots 
resulted in an accuracy of 73.1%, where 19 out of 26 predictions were correct. Sensitivity 
analysis revealed that the entropy reduction was 0.315, 0.066, and 0.038 for SAR backscatter 
coefficient, distance to the watercourse, and peat subsidence rate, respectively. This means that 
the SAR backscatter coefficient is the parameter with the highest influence over the GWL result 
in the model. 
 

 
Figure 6. Confusion matrices displaying the number of matched and unmatched classes between 
predicted and actual groundwater level values for 100 ha polygons (A) and the Biebrza National 
Park plots (B) used as the validation set 
Source: own work. 
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DISCUSSION 
 

The results of this study highlight the potential of using BBN in conjunction with remote 
sensing data to address the challenge of estimating GWLs in peatlands, particularly in the 
context of environmental management and GHG mitigation. The model achieved predictive 
accuracies of 73.1–83.3%, proving its effectiveness as a cost-efficient alternative to traditional 
GWL measurement methods, which are often hindered by logistical constraints and high costs. 
The results demonstrate that remote sensing can serve as a reliable proxy for groundwater 
dynamics, which are vital for understanding and managing peatland ecosystems. These findings 
are particularly important as they provide a means to evaluate the hydrological status of 
peatlands that lack extensive monitoring infrastructures, ultimately supporting restoration 
efforts aimed at enhancing carbon sequestration in peat soils. By linking GWL estimates 
to GHG emissions, this research can contribute to the broader goal of developing adaptive 
management strategies that can support policy decisions and promote sustainable land 
use practices. 

Numerous approaches have been explored to estimate GWLs in peatlands without direct 
measurements, often by testing a range of remote sensing and non-remote sensing indicators to 
identify the most accurate and sensitive proxies for GWL prediction (Kameoka et al.,  
2021; Georgiou et al., 2023). Some of them reached higher (Hikouei et al., 2023) or lower 
(Bechtold et al., 2014) accuracy, although they had much more input data to teach the model. 
However, a significant challenge emerges from upscaling these indicators and models for 
application beyond the specific environments where they were initially built. For instance, 
Adinugroho et al. (2021) developed a model using Indonesian peatlands to estimate soil 
moisture using Sentinel imagery as a proxy for groundwater level. This model is available as 
an open-source SEPAL tool (FAO, 2021), but it did not perform well in the peatlands in BbPN. 
Ideally, an extensive monitoring network across diverse types and conditions of peatlands 
would be required to provide spatially comprehensive GWL data, facilitating robust model 
development and validation. Unfortunately, establishing and managing such a network is 
generally not feasible due to the significant financial, time, and logistical resources required 
and the different monitoring protocols in peatlands across countries (Gutierrez Pacheco et al., 
2021). The Bayesian belief network employed in this study faces similar challenges. Several 
uncertainties emerged during data preparation, model construction, and validation. A primary 
concern lies in the inherent limitations of remote sensing data, such as the constraints imposed 
by spatial resolution and satellite revisit intervals. Additionally, because synthetic aperture 
radar (SAR) cannot penetrate dense tree canopies, some datasets had to be excluded to prevent 
the introduction of inaccuracies. Further complications arise from temporal discrepancies 
between the multi-year GWL measurements and the remote sensing data, as these datasets were 
collected over differing timeframes. For instance, the SAR backscatter coefficient used in 
this study was averaged from all available Sentinel-1 imagery since its launch. In contrast, the 
multi-year GWL data from some piezometers represents a more extended period, potentially 
leading to inconsistencies. Other uncertainties arise from the limited size of the training dataset, 
which reduces the variety of variable class combinations within the model due to limitations in 
piezometer coverage, potentially leading to inaccurate predictions. The possibility of 
mismatching definitions of intervals or classes of variables aggravates this issue. The obtained 
accuracy in the built model may be somewhat misleading due to unbalanced proportions in the 
class distributions, as class C5 in the validation set was much more frequent than the others, 
and some classes were even missing (C1 and C3 in the 100-hectare polygon validation set). 
Moreover, it is crucial to address whether the level of accuracy in GWL prediction is sufficient 
for practical applications, such as estimating greenhouse gas emissions. 
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The most common way to teach Bayesian networks is using observational data and/or expert 
knowledge (Daly et al., 2011). However, the data is often insufficient to capture all model 
variables (Masegosa et al., 2016), which was the case in this study. One approach to addressing 
this issue would be to obtain missing data from other models. In terms of the future development 
of the BBN created in this study, there are plans to construct a multiple regression model. 
This model would facilitate the generation of new GWLs based on the known remote sensing 
parameters used in the study. The generated data could then be used to update the developed 
BBN. Additionally, the data from the BbPN area should be complemented and tested with data 
from other peatlands across all of Poland and outside of the country, especially since other 
studies found that results obtained at one peatland using SAR imagery cannot be compared with 
different sites (Lees et al., 2021). Incorporating data from various peatlands will improve the 
accuracy of future models and provide a more comprehensive understanding of the relationship 
between the GWL and parameters derived from remote sensing. Furthermore, the potential of 
other remote sensing data sources could also be investigated to improve the prediction accuracy. 

Despite the indicated limitations, the presented assessment methodology may be one of the 
few that can be applied under operational conditions to determine the multi-year average GWL 
in peatlands, where necessary (e.g., for the purpose of assessing the hydrological status of 
remote/unmonitored peatlands before undertaking restoration measures) and where 
hydrological monitoring has never been conducted and the use of more complex methods will 
be pointless due to the long analysis time, its complexity and data requirements. Indeed, under 
the assumptions of implementing programs that encourage carbon retention in rewetted peat 
soils, there will be a need for an ex-ante evaluation of the effectiveness and scale of success of 
these measures. Under such conditions, a rapid assessment of the average state of groundwater 
will prove necessary. So far, published experience of the uncertainty in the success of peatland 
rewetting and the resulting increase in GWL of a few centimeters (Karimi et al., 2024) indicates 
that even an uncertainty-laden assessment of water levels using the Bayesian belief network 
presented here can become a useful, and perhaps even the only, tool that provides a meaningful 
quantification of peatland GWL from a multi-year period. However, this will certainly require 
calibration and verification of the method on other, possibly numerous, peatlands with available 
data from long-term GWL monitoring. 
 
 
CONCLUSIONS 
 

This research demonstrates the application of a BBN model integrated with remote sensing 
data to estimate the mean groundwater levels in peatlands, with a specific focus on the Biebrza 
National Park in Poland. The developed Bayesian network can predict GWLs within the defined 
classes with an accuracy of 73.1–83.3%. Additionally, dual-polarized radar backscatter has 
been validated as a proxy for GWL, showing a high correlation with field-measured GWL data. 
Among the remote sensing variables considered, the SAR backscatter coefficient was the most 
sensitive in predicting the GWL in peatlands. The study emphasizes the potential of the 
Bayesian network model as a cost-effective and efficient alternative to traditional GWL 
measurement techniques. It also highlights the critical role of high-resolution remote sensing 
data in improving GWL estimates and the effectiveness of Bayesian networks in managing 
uncertainties and providing conditional probabilities for different outcomes. This underscores 
the importance of the continued development and refinement of predictive models for 
environmental management. Developing this modeling approach to other peatland areas 
globally is recommended, particularly in regions where ground-based monitoring is logistically 
challenging or costly. Future research should also explore incorporating additional remote 
sensing parameters and the potential impact of climatic variables on the model’s predictive 
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accuracy. In conclusion, the study demonstrates the feasibility and effectiveness of using 
Bayesian networks and remote sensing data to estimate GWLs in peatlands. This approach 
remains a valuable next step in achieving efficient peatland monitoring and management, 
despite its uncertainties. However, further improvements in the prediction of GWL by utilizing 
available hydrological and remote sensing data are required, especially including testing 
alternative modeling approaches. 
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Summary 
 

Large-scale management, protection, and restoration of wetlands require knowledge of their 
hydrology, i.e., the status and dynamics of the groundwater table, which determine the evolution 
of the wetland ecosystem, its conservation value, and possible economic use. Unfortunately, in 
many cases, hydrological monitoring data are unavailable, resulting in the search for a proxy 
for the average annual depth of the groundwater level (GWL). This study presents an approach 
to estimating the mean GWL in peatlands using a Bayesian belief network (BBN) model, 
leveraging long-term hydrological and remote sensing data in the Biebrza National Park in 
Poland. The remote sensing data employed includes the synthetic aperture radar (SAR) 
backscatter coefficient, peat subsidence, rate and distance to watercourses. The BBN model 
achieved a predictive accuracy of 83.3% and 73.1%, depending on the validation approach 
used. Among the remote sensing variables considered, the SAR backscatter coefficient was the 
most sensitive in predicting the GWL in the peatlands. However, the model presents multiple 
uncertainties resulting from limitations of the available remote sensing data, low variability of 
class combinations in the conditional probability table, and lack of upscaling to other regions 
performed. Despite these uncertainties, the developed BBN model remains a valuable next step 
in reaching the goal of efficient peatland monitoring and management. 
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Supplementary material – piezometers 
 

Table 1. Piezometers within the Biebrza National Park used in the study 

ID Piezometer/Transect name Start of 
measurement 

End of 
measurement 

Mean GWT  
[m] 

1 – 2014 2022 0.001 
2 – 2015 2022 −0.002 
3 – 2014 2021 −0.004 
4 – 2014 2021 −0.004 
5 – 2015 2021 −0.003 
6 – 2015 2021 −0.001 
7 – 2015 2021 −0.004 
8 – 2014 2021 −0.002 
9 – 2015 2021 −0.001 
10 – 2015 2021 −0.001 
11 – 2017 2021 −0.001 
12 – 2015 2021 −0.001 
13 – 2011 2018 −0.001 
14 Brzeziny Ciszewskie 1998 2022 −0.343 
15 Brzeziny Ciszewskie 1998 2022 −0.320 
16 Ciszewo 1994 2022 −0.351 
17 Ciszewo 1994 2022 −0.267 
18 Ciszewo 1994 2022 −0.380 
19 Ciszewo 1994 2022 −0.247 
20 Ciszewo 1994 2022 −0.314 
21 Czerwone Bagno T 2008 2015 −0.062 
22 Czerwone Bagno T 2008 2015 −0.039 
23 Długa Luka 2009 2022 −0.023 
24 Grobla Honczarowska 1998 2022 0.027 
25 Grobla Honczarowska 1998 2022 0.089 
26 Grobla Honczarowska 1998 2022 −0.010 
27 Grzędy I 1996 2022 −0.385 
28 Grzędy I 1996 2022 −0.498 
29 Grzędy I 1996 2022 −0.363 
30 Grzędy I 1996 2022 −0.381 
31 Grzędy I 1996 2022 −0.330 
32 Grzędy II 1996 2022 −0.514 
33 Gugny 2009 2022 −0.123 
34 Gugny 2009 2022 −0.095 
35 Gugny II 2009 2022 −0.085 
36 Gugny II 2009 2022 −0.125 
37 Gugny II 2009 2022 −0.012 
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Table 1 (cont.). Piezometers within the Biebrza National Park used in the study 

ID Piezometer/Transect name Start of 
measurement 

End of 
measurement 

Mean GWT  
[m] 

38 Jałowo 1998 2022 −0.302 
39 Jałowo 1998 2022 −0.034 
40 Kapice 2012 2021 −0.263 
41 Kuligi 1994 2022 −0.314 
42 Kuligi 1994 2022 −0.330 
43 Kuligi 1994 2022 −0.369 
44 Trójkąt I 1996 2022 −0.333 
45 Trójkąt I 1996 2022 −0.338 
46 Trójkąt I 1996 2022 −0.500 
47 Trójkąt II 1996 2022 −0.275 
48 Trójkąt II 1996 2022 −0.299 
49 Trójkąt II 1996 2022 −0.304 

Source: own work. 
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