The effect of pre-vulcanized latex usage on Marshall characteristics and stiffness modulus in hot mix asphalt wearing course (AC-WC) mixtures

Main Article Content

Ramadhani Ramadhani
Joni Arliansyah
Edi Kadarsa


Keywords : pre-vulcanized latex, AC-WC, modified asphalt binder, Marshall characteristics, stiffness modulus
Abstract

Flexible pavement itself uses asphalt binder as a binding material between aggregates, but with the increasing number of vehicle loads, the ability of flexible pavement needs to be improved. A rubber is a natural polymer material that can be used to improve asphalt mixtures’ performance. This paper aims to analyze the effect of using pre-vulcanized latex on characteristics in hot mix asphalt wearing course mixtures. Pre-vulcanized latex is used as a substitute material for asphalt binder at levels of 7% and 9% by weight. Based on Marshall test results, the AC-WC mixture using pre-vulcanized latex achieved Marshall stability of 11.63 kN or increased by 32.28% at 7% content, while at 9%, it resulted in Marshall stability of 10.69 kN or increased by 21.06%, compared to the specification limit, which is 8.83 kN. The stiffness modulus test results of the asphalt mixture showed that at a temperature of 25°C, there was an increase of 17.46% and 28.26%, respectively, when using pre-vulcanized latex at levels of 7% and 9%. These findings indicate that the use of pre-vulcanized latex as a partial replacement for asphalt has a positive impact on temperature changes in the pavement material.

Article Details

How to Cite
Ramadhani, R., Arliansyah, J., & Kadarsa, E. (2024). The effect of pre-vulcanized latex usage on Marshall characteristics and stiffness modulus in hot mix asphalt wearing course (AC-WC) mixtures. Scientific Review Engineering and Environmental Sciences (SREES), 33(2), 185–204. https://doi.org/10.22630/srees.6382
References

Abdelmagid, A. A., & Pei Feng, C. (2019). Evaluating the effect of rice-husk ash and crumb-rubber powder on the high-temperature performance of asphalt binder. Journal of Materials in Civil Engineering, 31 (12), 4019296. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002962 (Crossref)

Al-Mansob, R. A., Ismail, A., Alduri, A. N., Azhari, C. H., Karim, M. R., & Yusoff, N. I. M. (2014). Physical and rheological properties of epoxidized natural rubber modified bitumens. Construction and Building Materials, 63, 242–248. https://doi.org/10.1016/j.conbuildmat.2014.04.026 (Crossref)

Al-Sabaeei, A. M., Agus Mustofa, B., Sutanto, M. H., Sunarjono, S., & Bala, N. (2020). Aging and rheological properties of latex and crumb rubber modified bitumen using dynamic shear rheometer. Journal of Engineering and Technological Sciences, 52 (3), 385–398. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.6 (Crossref)

American Association of State Highway and Transportation Officers [AASHTO], (2010). Determining the rheological properties of asfhalt binder using a dynamic shear rheometer (DSR). (AASHTO T315-10).

ASTM International [ASTM], (1976). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine (ASTM C 131-76).

ASTM International [ASTM], (1984). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate (ASTM C 127-84).

ASTM International [ASTM], (1989). Test method for resistance of plastic flow of bituminous mixtures using Marshall apparatus (ASTM D1559-89).

ASTM International [ASTM], (2002). Standard test methods for specific gravity of soil solids by water pycnometer (ASTM D 854-02).

ASTM International [ASTM], (2003). Standard test method for specific gravity and density of semi-solid bituminous materials (pycnometer method) (ASTM D 70-03).

ASTM International [ASTM], (2010). Standard test method for softening point of bitumen (ring-and-ball apparatus) (ASTM D 36).

ASTM International [ASTM], (2012). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer (ASTM D 4402).

ASTM International [ASTM], (2019). Compositional analysis of rubber by thermogravimetry (TGA) (ASTM D 6370-99).

ASTM International [ASTM], (2020). Standard test method for penetration of bituminous materials (ASTM D 5).

ASTM International [ASTM], (2021). Standard test methods for rubber products – chemical analysis (ASTM D 297).

ASTM International [ASTM], (2023). Standard specification for rubber – concentrated, ammonia stabilized, creamed, and centrifuged natural latex (ASTM D 1076).

Badan Standardisasi Nasional [BSN], (1996). Cara uji berat jenis dan penyerapan air agregat halus [How to test specific gravity and water absorption of fine aggregates] (SNI 03-4142:1996).

Badan Standardisasi Nasional [BSN], (2008a). How to test aggregate wear using a Los Angeles abrasion machine (SNI 2417:2008).

Badan Standardisasi Nasional [BSN], (2008b). How to test specific gravity and fine aggregate water absorption (SNI 1970:2008).

Badan Standardisasi Nasional [BSN], (2016). How to test specific gravity and water absorption of coarse aggregates (SNI 1969:2016).

Behnood, A., & Gharehveran, M. M. (2019). Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112, 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049 (Crossref)

Bethary, R., & Subagio, B. (2020). Rheological characteristics of Reclaimed Asphalt Pavement (RAP) evaluation using reclamite rejuvenating material. IOP Conference Series: Materials Science and Engineering, 739 (1), 12006. https://doi.org/10.1088/1757-899X/739/1/012006 (Crossref)

Bindu, C. S., Joseph, M. S., Sibinesh, P. S., George, S., & Sivan, S. (2020). Performance evaluation of warm mix asphalt using natural rubber modified bitumen and cashew nut shell liquid. International Journal of Pavement Research and Technology, 13 (4), 442–453. https://doi.org/10.1007/s42947-020-0241-7 (Crossref)

British Standards Institution [BSI], (1993). Method for determination of the indirect tensile stiffness modulus of bituminous mixtures (BS DD 213:1993).

Brown, S. F., & Brunton, J. M. (1984). An introduction to the analytical design of bituminous pavements. University of Nottingham.

Dai, J., & Jia, X. (2022). Fatigue performance of high-modulus basalt fiber-reinforced asphalt mixture. Journal of Applied Science and Engineering, 26 (8), 1187–1193. https://doi.org/10.6180/jase.202308_26(8).0014

Daniel, N. H., Hassan, N. A., Idham, M. K., Jaya, R. P., Hainin, M. R., Ismail, C. R., Puan, O. C., & Azahar, N. M. (2019). Properties of bitumen modified with latex. IOP Conference Series: Materials Science and Engineering, 527 (1), 12063. https://doi.org/10.1088/1757-899X/527/1/012063 (Crossref)

Guo, F., Zhang, J., Pei, J., Zhou, B., Falchetto, A. C., & Hu, Z. (2020). Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation. Construction and Building Materials, 252, 118956. https://doi.org/10.1016/j.conbuildmat.2020.118956 (Crossref)

Hasaninia, M., & Haddadi, F. (2017). The characteristics of hot mixed asphalt modified by nanosilica. Petroleum Science and Technology, 35 (4), 351–359. https://doi.org/10.1080/10916466.2016.1258412 (Crossref)

Irfan, I., Subagio, B. S., Hariyadi, E. S., & Maha, I. (2021). Performance evaluation of Pre-Vulcanized Liquid Natural Rubber (PVLNR) in Hot Mix Asphaltic Concrete. GEOMATE Journal, 20 (78), 107–114. (Crossref)

Irfan, I., Subagio, B. S., Hariyadi, E. S., & Maha, I. (2022). The rutting resistance and resilient moduli of Pre-Vulcanized Liquid Natural Rubber modified asphaltic concrete in warm-mix temperature condition. Journal of Civil Engineering and Management, 28 (3), 196–207. https://doi.org/10.3846/jcem.2022.16452 (Crossref)

Jamaris, U., Hassan, N. A., Mahmud, M. Z. H., Ismail, C. R., Yaacob, H., & Hassan, S. A. (2021). Properties of bitumen modified with latex under short-term ageing. IOP Conference Series: Materials Science and Engineering, 1144 (1), 12084. https://doi.org/10.1088/1757-899X/1144/1/012084 (Crossref)

Jimmyanto, H., Arliansyah, J., & Kadarsa, E. (2023). Rheological characteristics of asphalt with a crumb rubber and solid natural rubber combination. Civil Engineering and Architecture, 11 (5A), 3051–3062. https://doi.org/10.13189/cea.2023.110819 (Crossref)

Jitsangiam, P., Nusit, K., Phenrat, T., Kumlai, S., & Pra-ai, S. (2021). An examination of natural rubber modified asphalt: effects of rubber latex contents based on macro- and micro-observation analyses. Construction and Building Materials, 289, 123158. https://doi.org/10.1016/j.conbuildmat.2021.123158 (Crossref)

Nguyen, N-L., Nguyen, M. H., Vo, D-T., Truong, V. Q., Le, T-H., & Tran, D-T. (2022). The influence of short and long term aging on the dynamic modulus of recycled polyethylene asphalt mixture. Journal of Applied Science and Engineering, 25 (6), 1205–1216. https://doi.org/10.6180/jase.202212_25(6).0016

Özel, F., Deniz, M. T., & Yüce, M. İ. (2023). Evaluation of olive pomace and SBS modified bitumen to the performance characteristics. Case Studies in Construction Materials, 19, e02432. https://doi.org/10.1016/j.cscm.2023.e02432 (Crossref)

Poovaneshvaran, S., Hasan, M. R. M., & Jaya, R. P. (2020). Impacts of recycled crumb rubber powder and natural rubber latex on the modified asphalt rheological behaviour, bonding, and resistance to shear. Construction and Building Materials, 234, 117357. https://doi.org/10.1016/j.conbuildmat.2019.117357 (Crossref)

Prastanto, H., Firdaus, Y., Puspitasari, S., Ramadhan, A., & Falaah, A. F. (2019). Study of physical characteristic of rubberized hot mix asphalt based on various dosage of natural rubber latex and solid rubber. IOP Conference Series: Materials Science and Engineering, 509 (1), 12049. https://doi.org/10.1088/1757-899X/509/1/012049 (Crossref)

Putri, E. E., & Sari, R. R. (2021). The study of split mastic asphalt pavement with latex addition for flooded road. IOP Conference Series: Earth and Environmental Science, 708 (1), 12046. https://doi.org/10.1088/1755-1315/708/1/012046 (Crossref)

Rahman, H., & Zega, R. T. (2018). Analisis Kesesuaian Model Modulus Aspal dan Campuran Laston Lapis Aus untuk Aspal Modifikasi Asbuton Murni. Jurnal Teknik Sipil ITB, 25 (1), 71–80. https://doi.org/10.5614/jts.2018.25.1.9 (Crossref)

Ramadhani, R., Arliansyah, J., & Kadarsa, E. (2023). Rheological behavior of modified asphalt binders using pre-vulcanized latex with dynamic shear rheometer testing. Civil Engineering and Architecture, 11 (6), 3355–3369. https://doi.org/10.13189/cea.2023.110611 (Crossref)

Read, J., & Whiteoak, D. (2003). The Shell Bitumen Handbook. Thomas Telford.

Shaffie, E., Ahmad, J., Arshada, A. K., Kamarun, D., & Awang, H. (2016). Investigation on rutting performance of nanopolyacrylate and natural rubber latex polymer modified asphalt binder mixes. Jurnal Teknologi, 78 (7–3), 10–14. https://doi.org/10.11113/jt.v78.9469 (Crossref)

Siswanto, H. (2019). Effect of latex to minimize the use of asphalt in asphalt concrete wearing course. Materials Science Forum, 961, 39–44. https://doi.org/10.4028/www.scientific.net/MSF.961.39 (Crossref)

Tamele Jr, L., Muiambo, H., Buonocore, G., & Cumbane, C. (2022). Thermal proprieties and decomposition kinetics of asphalt binder modified by thermoplastic polymer and nanoclay Dellite 43B. Journal of Applied Science and Engineering, 26 (1), 11–21. https://doi.org/10.6180/jase.202301_26(1).0002

Wan, L., Garcia-Hernández, A., Cui, G., & Liu, P. (2023). A novel performance-based method to design asphalt mixtures. Construction and Building Materials, 400, 132792. https://doi.org/10.1016/j.conbuildmat.2023.132792 (Crossref)

Wen, Y., Wang, Y., Zhao, K., & Sumalee, A. (2017). The use of natural rubber latex as a renewable and sustainable modifier of asphalt binder. International Journal of Pavement Engineering, 18 (6), 547–559. https://doi.org/10.1080/10298436.2015.1095913 (Crossref)

Wititanapanit, J., Carvajal-Munoz, J. S., & Airey, G. (2021). Performance-related and rheological characterisation of natural rubber modified bitumen. Construction and Building Materials, 268, 121058. https://doi.org/10.1016/j.conbuildmat.2020.121058 (Crossref)

Wu, S. (2018). Characterization of ductility of field-aged petroleum asphalt. Petroleum Science and Technology, 36 (9–10), 696–703. https://doi.org/10.1080/10916466.2018.1443125 (Crossref)

Statistics

Downloads

Download data is not yet available.