Main Article Content
Corrosion of concrete can lead to cracking and a decline in serviceability, necessitating effective methods to minimize the risk of corrosion. This study investigates the use of pozzolanic materials, specifically fly ash, bottom ash, and silica fume, combined with Bacillus subtilis bacteria as fillers to enhance the concrete structure’s resistance to corrosion. The research involves substituting fly ash (15–25%) and silica fume (5–15%) for cement by weight, alongside replacing sand with bottom ash at 15%. Additionally, Bacillus subtilis is incorporated into all pozzolanic concrete specimens. The study evaluates the mechanical properties of the concrete and employs non-destructive testing to correlate the physical condition with test results while preserving the structural integrity. The findings demonstrate that the inclusion of fly ash, bottom ash, silica fume, and Bacillus subtilis bacteria improves the mechanical properties of the concrete and effectively reduces the rate of corrosion, highlighting the potential for these materials to enhance the durability of concrete structures.
Article Details
Adil, G., Kevern, J. T., & Mann, D. (2020). Influence of silica fume on mechanical and durability of pervious concrete. Construction and Building Materials, 247, 118453. https://doi.org/10.1016/j.conbuildmat.2020.118453 (Crossref)
Ahmad, S., Al-Amoudi, O. S. B., Khan, S. M., & Maslehuddin, M. (2022). Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Studies in Construction Materials, 17, e01255. https://doi.org/10.1016/j.cscm.2022.e01255 (Crossref)
Ali, T., Buller, A. S., Abro, F. u. R., Ahmed, Z., Shabbir, S., Lashari, A. R., & Hussain, G. (2022). Investigation on mechanical and durability properties of concrete mixed with silica fume as cementitious material and coal bottom ash as fine aggregate replacement material. Buildings, 12 (1), 44. https://doi.org/10.3390/buildings12010044 (Crossref)
Almasaeid, H. H., Suleiman, A., & Alawneh, R. (2022). Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Studies in Construction Materials, 16, e01080. https://doi.org/10.1016/j.cscm.2022.e01080 (Crossref)
Almashakbeh, Y., & Saleh, E. (2022). Evaluation of ultrasonic pulse velocity (UPV) for reinforced concrete corrosion. Journal of Applied Engineering Science, 20 (4), 1226‒1233. https://doi.org/10.5937/jaes0-38140 (Crossref)
Anwar, M., Gad, A. I., & Sayed Khalil, M. (2022). Influence of Using Fly ash and Silica Fume on the Concrete Performance against Chloride Attack. JES. Journal of Engineering Sciences, 50 (6), 325‒334. https://doi.org/10.21608/jesaun.2022.140662.1141 (Crossref)
ASTM International [ASTM]. (2016). Standard test method for flexural strength of concrete (using simple beam with center-point loading) (ASTM C293/C293M-16).
ASTM International [ASTM]. (2018). Standard specification for concrete aggregates (ASTM C33/C33M-18).
ASTM International [ASTM]. (2021). Standard test method for compressive strength of cylindrical concrete specimens (ASTM C39/C39M-21).
Badan Standardisasi Nasional [BSN]. (2008). Cara uji keausan agregat dengan mesin abrasi los angeles (SNI 2417:2008).
Badan Standardisasi Nasional [BSN]. (2012a). Metode uji bahan yang lebih halus dari saringan 75 µm (No. 200) dalam agregat mineral dengan pencucian (SNI ASTM C117:2012).
Badan Standardisasi Nasional [BSN]. (2012b). Metode uji untuk analisis saringan agregat halus dan agregat kasar (SNI ASTM C136:2012).
Badan Standardisasi Nasional [BSN]. (2016a). Cara uji berat jenis dan penyerapan air agregat kasar (SNI 1969:2016).
Badan Standardisasi Nasional [BSN]. (2016b). Cara uji berat jenis dan penyerapan air agregat halus (SNI 1970:2016).
Dixon, D. E., Prestrera, J. R., Burg, G. R., Chairman, S. A., Abdun-Nur, E. A., Barton, S. G., Bell, L. W., Blas Jr, S. J., Carraquillo, R. L., & Carraquillo, P. M. (1991). Standard practice for selecting proportions for normal heavyweight, and mass concrete (ACI 211.1-91) reapproved 1997. ACI Committee.
El Maaddawy, T. A., & Soudki, K. A. (2003). Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete. Journal of Materials in Civil Engineering, 15 (1), 41‒47. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(41) (Crossref)
Falmata, A., Sulaiman, A., Mohamed, R., & Shettima, A. (2020). Mechanical properties of self-compacting high-performance concrete with fly ash and silica fume. SN Applied Sciences, 2, 1‒11. https://doi.org/10.1007/s42452-019-1746-z (Crossref)
Ganesh, S., Danish, P., Anita Jessie, J., Ganie, M., & Raina, C. (2020). Experimental study on self-healing concrete with the effect of bacillus subtilis bacteria to improve the strength and sustainability of the concrete. Journal of Green Engineering, 10 (4), 1909‒1923.
Jena, S., Basa, B., Panda, K. C., & Sahoo, N. K. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651–656. https://doi.org/10.1016/j.matpr.2020.03.129 (Crossref)
Kanwal, M., Khushnood, R. A., Adnan, F., Wattoo, A. G., & Jalil, A. (2023). Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment. Cement and Concrete Composites, 137, 104937. https://doi.org/10.1016/j.cemconcomp.2023.104937 (Crossref)
Li, W., Lin, X., Bao, D. W., & Xie, Y. M. (2022). A review of formwork systems for modern concrete construction. Structures, 38, 52‒63. https://doi.org/10.1016/j.istruc.2022.01.089 (Crossref)
Malaiškienė, J., & Vaičienė, M. (2024). The Influence of silica fly ash and wood bottom ash on cement hydration and durability of concrete. Materials, 17 (16), 4031. https://doi.org/10.3390/ma17164031 (Crossref)
Meena, A., Singh, N., & Singh, S. (2023). Sustainable development of high-volume fly ash self-compacting concrete incorporating bottom ash and recycled concrete aggregates. Journal of Materials and Engineering Structures – JMES, 10 (4), 615‒630. https://revue.ummto.dz/index.php/JMES/article/view/3426
Mh, W., Hamzah, A., Jamaluddin, N., Mangi, S., & Ramadhansyah, P. (2020). Influence of bottom ash as a sand replacement material on durability of self-compacting concrete exposed to seawater. Journal of Engineering Science and Technology, 15 (1), 555–571. https://jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_40.pdf
Monika, F., Prayuda, H., Cahyati, M. D., Augustin, E. N., Rahman, H. A., & Prasintasari, A. D. (2022). Engineering properties of concrete made with coal bottom ash as sustainable construction materials. Civil Engineering Journal, 8 (1), 181‒194. http://doi.org/10.28991/CEJ-2022-08-01-014 (Crossref)
Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability, 13 (1), 398. https://doi.org/10.3390/su13010398 (Crossref)
Nanda, B., & Rout, S. (2021). Properties of concrete containing fly ash and bottom ash mixture as fine aggregate. International Journal of Sustainable Engineering, 14 (4), 809‒819. https://doi.org/10.1080/19397038.2021.1920641 (Crossref)
Nayak, D. K., Abhilash, P., Singh, R., Kumar, R., & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 6, 100143. https://doi.org/10.1016/j.clema.2022.100143 (Crossref)
Nindhita, K. W., Zaki, A., & Zeyad, A. M. (2024). Effect of Bacillus subtilis Bacteria on the mechanical properties of corroded self-healing concrete. Fracture & Structural Integrity/Frattura ed Integrità Strutturale, 18 (68), 140‒158. https://doi.org/10.3221/IGF-ESIS.68.09 (Crossref)
Panda, S., Pradhan, M., & Panigrahi, S. K. (2024). Comparative study of OPC and PPC-based concrete properties containing bottom ash and fly ash as fine aggregate. Indian Concrete Journal, 98 (7), 7‒19.
Premalatha, P., Geethanjali, M., Sundararaman, S., & Murali, C. (2023). An experimental investigation on self-healing concrete using “Bacillus subtilis”. Materials Today: Proceedings, 2023, 1‒5. https://doi.org/10.1016/j.matpr.2023.08.118
Priyom, S. N., Islam, M. M., & Shumi, W. (2021). The utilization of Bacillus Subtilis Bacteria to improve the mechanical properties of concrete. Journal of the Civil Engineering Forum, 7 (1), 97‒108. https://doi.org/10.1016/j.matpr.2023.08.118 (Crossref)
Rahita, A. C., & Zaki, A. (2023, 9–10 August). Corrosion analysis on reinforcing steel in concrete using the eddy current method. 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), Yogyakarta, Indonesia. https://doi.org/10.1109/ICE3IS59323.2023.10335487 (Crossref)
Robles, K. P. V., Gucunski, N., & Kee, S.-H. (2024). Evaluation of steel corrosion-induced concrete damage using electrical resistivity measurements. Construction and Building Materials, 411, 134512. https://doi.org/10.1016/j.conbuildmat.2023.134512 (Crossref)
Robles, K. P. V., Yee, J. J., & Kee, S. H. (2022). Electrical resistivity measurements for nondestructive evaluation of chloride-induced deterioration of reinforced concrete – a review. Materials, 15 (8), 2725. https://doi.org/10.3390/ma15082725 (Crossref)
Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. https://doi.org/10.1016/j.conbuildmat.2020.121240 (Crossref)
Solís-Carcaño, R., & Moreno, E. I. (2008). Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Construction and Building Materials, 22 (6), 1225‒1231. https://doi.org/10.1016/j.conbuildmat.2007.01.014 (Crossref)
Su, T., Wu, J., Zou, Z., Wang, Z., Yuan, J., & Yang, G. (2022). Influence of environmental factors on resistivity of concrete with corroded steel bar. European Journal of Environmental and Civil Engineering, 26 (4), 1229‒1242. https://doi.org/10.1080/19648189.2019.1670265 (Crossref)
Wang, L., Jin, M., Guo, F., Wang, Y., & Tang, S. (2021). Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals, 29 (02), 2140003. https://doi.org/10.1142/S0218348X2140003X (Crossref)
Zaki, A., Chai, H. K., Aggelis, D. G., & Alver, N. (2015). Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors, 15 (8), 19069‒19101. https://doi.org/10.3390/s150819069 (Crossref)
Zhang, C., & Zhang, F. (2020). Incorporation of silicon fume and fly ash as partial replacement of Portland cement in reinforced concrete: Electrochemical study on corrosion behavior of 316LN stainless steel rebar. International Journal of Electrochemical Science, 15 (5), 3740‒3749. https://doi.org/10.20964/2020.05.77 (Crossref)
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.