Hydrological analysis of the Oder droughts for the period 1950‒2022 in the context of the 2022 river disaster

Main Article Content

Muhammad Umar Ali
Mateusz Grygoruk


Keywords : trend analysis, low flow, Poland, water management
Abstract

The study aims to analyze the droughts of the Oder from 1950 to 2022 at three water gauge profiles located in the upper (Chałupki), middle (Połęcko), and lower (Gozdowice) reaches of the Oder. The subject of the analysis was the temporal variability of the lowest annual and monthly flows of the Oder, the durations of lows characterized by a flow lower than the adopted threshold criterion (average annual minimum flow, SNQ), and the trends of their changes in the analyzed period. We identified decreasing trends of the lowest annual river flows in the middle and lower reaches of the Oder. The lowest monthly flows of the Oder exhibit statistically significant trends in the months of April–September (Połęcko) and May–September (Gozdowice). The summer drought of 2022 was exceptionally long and severe (the discharge deficit amounted to more than 1.8 Mm³ in the Gozdowice profile) and is unlikely to be reduced to the SNQ level through any existing or planned reservoir. Changes in the drought indicators occur as a result of the course of hydrological processes taking place in the Polish part of the Oder basin.

Article Details

How to Cite
Ali, M. U., & Grygoruk, M. (2025). Hydrological analysis of the Oder droughts for the period 1950‒2022 in the context of the 2022 river disaster. Scientific Review Engineering and Environmental Sciences (SREES), 34(4), 398–416. https://doi.org/10.22630/srees.10421
References

Absalon, D., Matysik, M., Woźnica, A., & Janczewska, N. (2023). Detection of changes in the hydrobiological parameters of the Oder River during the ecological disaster in July 2022 based on multi-parameter probe tests and remote sensing methods. Ecological Indicators, 148, 110103. https://doi.org/10.1016/j.ecolind.2023.110103 (Crossref)

Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M. I., Teutschbein, C., Wendt, D. E., Akstinas, V., Bakke, S. J., Barker, L. J., Bartošová, L., Briede, A., Cammalleri, C., Kalin, K. C., De Stefano, L., Fendeková, M., Finger, D. C., Huysmans, M., Ivanov, M., Jaagus, J., …, & Živković, N. (2022). Lessons from the 2018–2019 European droughts: A collective need for unifying drought risk management. Natural Hazards and Earth System Sciences, 22(6), 2201–2217. https://doi.org/10.5194/nhess-22-2201-2022 (Crossref)

Blöschl, G. (2022). Three hypotheses on changing river flood hazards. Hydrology and Earth System Sciences, 26(19), 5015–5033. https://doi.org/10.5194/hess-26-5015-2022 (Crossref)

Eini, M. R., Ziveh, A. R., Salmani, H., Mujahid, S., Ghezelayagh, P., & Piniewski, M. (2023). Detecting drought events over a region in Central Europe using a regional and two satellite-based precipitation datasets. Agricultural and Forest Meteorology, 342, 109733. https://doi.org/10.1016/j.agrformet.2023.109733 (Crossref)

Graf, R., & Wrzesiński, D. (2020). Detecting patterns of changes in river water temperature in Poland. Water, 12(5), 1327. https://doi.org/10.3390/w12051327 (Crossref)

Joint Research Centre [JRC] (2020). Fact sheet: Oder River basin. https://water.jrc.ec.europa.eu/pdf/oder-fs.pdf

Kolada, A. (ed.) (2022). Report of the team for the situation arising on the Oder River. The basis for further research – Odra. Institute of Environmental Protection – National Research Institute. https://ios.edu.pl/projekt/prezentacja-wnioskow-ze-wstepnego-raportu-zespolu-ds-sytuacji-na-rzece-odrze/

Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C., Ciavarella, A., De Cruz, L., Vries, H. de, Demuth, N., Ferrone, A., Fischer, M., Fowler, H. J., Goergen, K., Heinrich, D., …, & Wanders, N. (2021). Rapid attribution of heavy rainfall events leading to severe flooding in Western Europe during July 2021. World Weather Attribution. http://hdl.handle.net/1854/LU-8732135

Moravec, V., Markonis, Y., Rakovec, O., Svoboda, M., Trnka, M., Kumar, R., & Hanel, M. (2021). Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environmental Research Letters, 16(3), 034062. https://doi.org/10.1088/1748-9326/abe828 (Crossref)

Parry, S., Hannaford, J., Lloyd-Hughes, B., & Prudhomme, C. (2012). Multi-year droughts in Europe: Analysis of development and causes. Hydrology Research, 43(5), 689–706. https://doi.org/10.2166/nh.2012.024 (Crossref)

Piniewski, M., Eini, M. R., Chattopadhyay, S., Okruszko, T., & Kundzewicz, Z. W. (2022). Is there a coherence in observed and projected changes in riverine low flow indices across Central Europe? Earth-Science Reviews, 233, 104187. https://doi.org/10.1016/j.earscirev.2022.104187 (Crossref)

Przybylak, R., Oliński, P., Koprowski, M., Filipiak, J., Pospieszyńska, A., Chorążyczewski, W., Puchałka, R., & Dąbrowski, H. P. (2020). Droughts in the area of Poland in recent centuries in the light of multi-proxy data. Climate of the Past, 16(2), 627–661. https://doi.org/10.5194/cp-16-627-2020 (Crossref)

Raczyński, K., & Dyer, J. (2024). Changes in streamflow drought and flood distribution over Poland using trend decomposition. Acta Geophysica, 72(4), 2773–2794. https://doi.org/10.1007/s11600-023-01188-0 (Crossref)

Sayegh, M., & Żabnieńska, A. (2019). Characteristics of Oder river water temperature for heat pump. E3S Web of Conferences, 116, 00071. https://doi.org/10.1051/e3sconf/201911600071 (Crossref)

Shah, S. A., & Kiran, M. (2021). Mann-Kendall test: trend analysis of temperature, rainfall and discharge of Ghotki feeder canal in district Ghotki, Sindh, Pakistan. Environment & Ecosystem Science, 5(2), 137–142. https://doi.org/10.26480/ees.02.2021.137.142 (Crossref)

Sługocki, Ł., & Czerniawski, R. (2023). Water quality of the Odra (Oder) River before and during the ecological disaster in 2022: a warning to water management. Sustainability, 15(11), 8594. https://doi.org/10.3390/su15118594 (Crossref)

Sperna Weiland, F. C., Visser, R. D., Greve, P., Bisselink, B., Brunner, L., & Weerts, A. H. (2021). Estimating regionalized hydrological impacts of climate change over Europe by performance-based weighting of CORDEX projections. Frontiers in Water, 3, 713537. https://doi.org/10.3389/frwa.2021.713537 (Crossref)

Stubbington, R., England, J., Sarremejane, R., Watts, G., & Wood, P. J. (2024). The effects of drought on biodiversity in UK river ecosystems: Drying rivers in a wet country. WIREs Water, 11(5), e1745. https://doi.org/10.1002/wat2.1745 (Crossref)

Sutanto, S. J., Weert, M. van der, Wanders, N., Blauhut, V., & Lanen, H. A. J. van (2019). Moving from drought hazard to impact forecasts. Nature Communications, 10(1), 4945. https://doi.org/10.1038/s41467-019-12840-z (Crossref)

Szlauer-Łukaszewska, A., Ławicki, Ł., Engel, J., Drewniak, E., Ciężak, K., & Marchowski, D. (2024). Quantifying a mass mortality event in freshwater wildlife within the Lower Odra River: Insights from a large European river. Science of The Total Environment, 907, 167898. https://doi.org/10.1016/j.scitotenv.2023.167898 (Crossref)

Tallaksen, L. M., & Lanen, H. A. J. van (2023). Hydrological drought: processes and estimation methods for streamflow and groundwater. Elsevier. (Crossref)

United Nations Convention to Combat Desertification (2022, May 11). World “at a crossroads” in drought management, up 29% in a generation and worsening, says UN. UNCCD. United Nations Convention to Combat Desertification. https://www.unccd.int/news-stories/press-releases/world-crossroads-drought-management-29-generation-and-worsening-says-un

Van Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359–392. https://doi.org/10.1002/wat2.1085 (Crossref)

Wrzesiński, D. (2021). Flow regime patterns and their changes. In M. Zeleňáková, K. Kubiak-Wójcicka & A. M. Negm (Eds), Management of water resources in Poland (pp. 163‒180). Springer International Publishing. https://doi.org/10.1007/978-3-030-61965-7_9 (Crossref)

Zhou, Z., Shi, H., Fu, Q., Li, T., Gan, T. Y., & Liu, S. (2020). Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in Northeast China. Journal of Hydrology, 588, 125097. https://doi.org/10.1016/j.jhydrol.2020.125097 (Crossref)

Statistics

Downloads

Download data is not yet available.