Main Article Content
In the pursuit of sustainable and energy-efficient construction materials, earth-based technologies such as compressed earth blocks (CEBs) offer a promising alternative to conventional fired bricks. This study investigates the physico-mechanical performance of CEBs formulated with 85% sandy granite saprolite from Chétaïbi and 15% marble waste, stabilized with varying cement contents (6%, 9%, and 12% by weight) and subjected to different compaction pressures. The produced blocks were evaluated in terms of dry density, total water absorption, compressive strength, and flexural strength. Results indicate that increasing the cement content significantly improves the mechanical properties while reducing water absorption. All formulations exceeded the minimum compressive strength of 2 MPa required by the French standard XP P 13-901, and water absorption values remained below the 15% threshold established by the Indian standard IS 1725. These findings confirm the potential of these blocks as a viable, low-impact alternative to traditional masonry units, supporting the development of more environmentally responsible construction practices.
Article Details
AE & CC (2022). Règles professionnelles Blocs de Terre Comprimèe (BTC) Mayotte. CRAterre. https://doi.org/10.58079/nakf
Association Française de Normalisation [AFNOR]. (1941). Concrete: preparation. Batching water for structural concrete (NF P18-303).
Association Française de Normalisation [AFNOR]. (1990). Aggregates. Measurement of densities, porosity, absorption coefficient and water content of fine gravel and pebbles (NF P18-554).
Association Française de Normalisation [AFNOR]. (1991). Soils: investigation and testing. Determination of particle density. Pycnometer method (NF P 94-054).
Association Française de Normalisation [AFNOR]. (1992a). Soils: investigation and testing. Granulometric analysis. Hydrometer method (NF P 94-056).
Association Française de Normalisation [AFNOR]. (1992b). Soils: investigation and testing. Granulometric analysis. Hydrometer method (NF P 94-057).
Association Française de Normalisation [AFNOR]. (1995). Soils: investigation and testing. Determination of moisture content. Oven drying method (NF P 94-050).
Association Française de Normalisation [AFNOR]. (1996). Soil: investigation and testing. Granulometric analysis. Dry sieving method after washing (NF P 94-056).
Association Française de Normalisation [AFNOR]. (1998). Soils: investigation and testing. Measuring of the methylene blue adsorption capacity of à rocky soil. Determination of the methylene blue of à soil by means of the stain test (NF P 94-068).
Association Française de Normalisation [AFNOR]. (2022). Compressed earth blocks for walls and partitions: definitions. Specifications. Test methods. Delivery acceptance conditions (XP P 13-901).
Association Française de Normalisation [AFNOR]. (2014). Soils: investigation and testing. Determination of the compaction reference values of a soil type. Standard proctor test. Modified proctor test (NF P 94-093).
Atiki, E. (2022). Formulation et caractérisation des blocs de terre comprimée à base de déchets de palmiers dattiers [doctoral thesis]. The University of Mohamed Khider Biskra.
Bahar, R., Benazzoug, M., & Kenai, S. (2004). Performance of compacted cement-stabilised soil. Cement and Concrete Composites, 26(7), 811–820. https://doi.org/10.1016/j.cemconcomp.2004.01.003 (Crossref)
Bureau of Indian Standards [BIS]. (1982). Soil based blocks used in general building construction (IS 1725).
Cid-Falceto, J., Mazarrón, F. R., & Cañas, I. (2012). Assessment of compressed earth blocks made in Spain: International durability tests. Construction and Building Materials, 37, 738–745. https://doi.org/10.1016/j.conbuildmat.2012.08.019 (Crossref)
Cruz, R., & Bogas, J. A. (2024). Durability of compressed earth blocks stabilised with recycled cement from concrete waste and incorporating construction and demolition waste. Construction and Building Materials, 450, 138673. https://doi.org/10.1016/j.conbuildmat.2024.138673 (Crossref)
Dao, K., Ouedraogo, M., Millogo, Y., Aubert, J. E., & Gomina, M. (2018). Thermal, hydric and mechanical behaviours of adobes stabilized with cement. Construction and Building Materials, 158, 84–96. https://doi.org/10.1016/j.conbuildmat.2017.10.001 (Crossref)
Elahi, T. E., Shahriar, A. R., & Islam, M. S. (2021). Engineering characteristics of compressed earth blocks stabilized with cement and fly ash. Construction and Building Materials, 277, 122367. https://doi.org/10.1016/j.conbuildmat.2021.122367 (Crossref)
European Committee for Standardization [CEN]. (2015). Tests for geometrical properties of aggregates. Part 8: Assessment of fines. Sand equivalent test (EN 933-8:2012+A1:2015).
European Committee for Standardization [CEN]. (2016). Methods of testing cement. Part 1: Determination of strength (EN 196-1).
European Committee for Standardization [CEN]. (2020). Tests for geometrical properties of aggregates. Part 2: Determination of particle size distribution. Test sieves, nominal size of apertures (EN 933-2).
Guettala, A., Abibsi, A., & Houari, H. (2006). Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Construction and Building Materials, 20(3), 119–127. https://doi.org/10.1016/j.conbuildmat.2005.02.001 (Crossref)
Institut Algérien de Normalisation [IANOR]. (2013). Composition, spécifications et critères de conformité des ciments courants (NA 442-2013).
Kerali, A. G. (2001). Durability of compressed and cement-stabilised building blocks [doctoral thesis]. The University of Warwick, Coventry.
Kumar, N., & Barbato, M. (2022). Effects of sugarcane bagasse fibers on the properties of compressed and stabilized earth blocks. Construction and Building Materials, 315, 125552. https://doi.org/10.1016/j.conbuildmat.2021.125552 (Crossref)
Moevus, M., Anger, R., & Fontaine, L. (2012, April 22-27). Hygro-thermo-mechanical properties of earthen materials for construction: a literature review. Terra 2012, XIth International Conference on the Study and Conservation of Earthen Architectural Heritage, Lima, Peru. https://hal.science/hal-01005948v1/document
Muhwezi, L., & Achanit, S. E. (2019). Effect of sand on the properties of compressed soil-cement stabilized blocks. Colloid and Surface Science, 4(1), 1–6. https://doi.org/10.11648/j.css.20190401.11 (Crossref)
Poullain, P., Leklou, N., Laibi, A. B., & Gomina, M. (2019). Propriétés des briques de terre compressées réalisées àpartir de matériaux traditionnels du Bénin [Properties of compressed earth blocks made of traditional materials from Benin]. Journal of Composite & Advanced Materials/Revue des Composites et des Matériaux Avancés, 29(4), 233–241. (Crossref)
Riza, F. V., & Rahman, I. A. (2015). The properties of compressed earth-based (CEB) masonry blocks. Eco-efficient Masonry Bricks and Blocks: Design, Properties and Durability, 2015, 379–392. https://doi.org/10.1016/B978-1-78242-305-8.00017-6 (Crossref)
Taallah, B. (2014). Etude du comportement physico-mécanique du bloc de terre comprimée avec fibres [doctoral thesis]. The University of Mohamed Khider Biskra. http://thesis.univ-biskra.dz/1173/1/Geni_civil_d4_2014.pdf
Taallah, B., Guettala, A., Guettala, S., & Kriker, A. (2014). Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Construction and Building Materials, 59, 161–168. https://doi.org/10.1016/j.conbuildmat.2014.02.058 (Crossref)
Tripura, D. D., & Singh, K. D. (2015). Characteristic properties of cement-stabilized rammed earth blocks. Journal of Materials in Civil Engineering, 27(7), 1–8. https://doi.org/10.1061/(asce)mt.1943-5533.0001170 (Crossref)
Venkatarama Reddy, B. V., & Gupta, A. (2005). Characteristics of soil-cement blocks using highly sandy soils. Materials and Structures/Materiaux et Constructions, 38(280), 651–658. https://doi.org/10.1617/14265 (Crossref)
Venkatarama Reddy, B. V., & Latha, M. S. (2014). Influence of soil grading on the characteristics of cement stabilised soil compacts. Materials and Structures/Materiaux et Constructions, 47(10), 1633–1645. https://doi.org/10.1617/s11527-013-0142-1 (Crossref)
Walker, P. J. (1995). Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cement and Concrete Composites, 17(4), 301–310. https://doi.org/10.1016/0958-9465(95)00019-9 (Crossref)
Downloads
- Samy Mezhoud, Hacene Badache, Evaluation of physical and mechanical properties of cement-treated base incorporating crushed waste tires , Scientific Review Engineering and Environmental Sciences (SREES): Vol. 32 No. 4 (2023)
- Guetteche Abderrahim, Bensebti Salaheddine, Samy Mezhoud, Tien-Tung Ngo, El Hadj Kadri, Structural evaluation and durability potential of cementitious materials based on expanded clay kiln dust , Scientific Review Engineering and Environmental Sciences (SREES): Vol. 33 No. 3 (2024)
- Mohamed BOUAOUD, Samy MEZHOUD, A new approach for assessing landslide vulnerability at the urban scale: the case of the city of Constantine, Algeria , Scientific Review Engineering and Environmental Sciences (SREES): Vol. 34 No. 3 (2025)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.