A new approach for assessing landslide vulnerability at the urban scale: the case of the city of Constantine, Algeria

Main Article Content

Mohamed BOUAOUD
Samy MEZHOUD


Keywords : landslide, vulnerability, risk assessment, Constantine, multi-criteria analysis
Abstract

The natural risk of landslides is one of the most recurrent major natural risks in the world and one of the main concerns of civil security, since it causes a great deal of material and human damage. In Algeria, the civil authorities give great importance to risk management by implementing a natural disaster strategy that encourages the creation of prevention tools involving researchers, decision-makers, the general public, and the various actors in the field, which has led to studies on vulnerability to various natural phenomena. Constantine is one of Algeria’s cities most at risk from landslides, due to its geology and the economic and social issues at stake. Therefore, we have developed a systemic, multi-criteria approach that puts into perspective the results of research on this risk in the city of Constantine, while defining the interactionist methodological model for vulnerability assessment and outlining the research context and problem. This research contributes to the field by proposing a reproducible, expert-informed methodology for urban-scale landslide vulnerability assessment. The approach is not only scientifically rigorous but also tailored for application in Algerian urban settings, offering new insights into the integration of local knowledge with spatial modeling techniques. The results provide a decision-support tool for urban planners, risk managers, and civil protection authorities.

Article Details

How to Cite
BOUAOUD, M., & MEZHOUD, S. (2025). A new approach for assessing landslide vulnerability at the urban scale: the case of the city of Constantine, Algeria. Scientific Review Engineering and Environmental Sciences (SREES), 34(3), 241–260. https://doi.org/10.22630/srees.10432
References

Abdı, A., Bouamrane, A., Karech, T., Dahri, N., & Kaouachi, A. (2021). Landslide susceptibility mapping using GIS-based fuzzy logic and the analytical hierarchical processes approach: a case study in Constantine (North-East Algeria). Geotechnical and Geological Engineering, 39, 5675–5691. https://doi.org/10.1007/s10706-021-01855-3 (Crossref)

Alcántara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2-4), 107–124. https://doi.org/10.1016/S0169-555X(02)00083-1 (Crossref)

ARCADIS-Simecsol, EEG & CTC (2001–2004). Étude de la vulnérabilité aux risques naturels à Constantine.

Arif, I., Hadji, R., Hamed, Y., Hamdi, N., Gentilucci, M., & Hajji, S. (2023). The geoenvironmental factors influencing slope failures in the Majerda basin, Algerian–Tunisian border. Euro Mediterranean Journal for Environmental Integration, 9(3), 355–376. https://doi.org/10.1007/s41207-023-00423-w (Crossref)

Benouar, D. (1994). Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Annals of Geophysics, 37(4). https://doi.org/10.4401/ag-4466 (Crossref)

Bezzeghoud, M., Buforn, E., & Udías, A. (1996). Seismicity and tectonics in the Mediterranean region. Tectonophysics, 261(1–3), 1–12.

Birkmann, J. (Ed.) (2006). Measuring vulnerability to natural hazards. United Nations University Press.

Bouragba, N., Hadji, R., & Abdelmadjid, Ch. (2023). An AHP GIS based methodology for the stability assessment of the Djebel El Ouahch collapsees on the Numidian Flysch Formation in northeast Algeria’s Constantine region. Central European Journal of Geography and Sustainable Development, 5(2), 24–45. https://doi.org/10.47246/CEJGSD.2023.5.2.2 (Crossref)

Bourenane, H., & Bouhadad, Y. (2021). Impact of land use changes on landslides occurrence in urban area: the case of the Constantine City (NE Algeria). Geotechnical and Geological Engineering, 39(6), 1–21. https://doi.org/10.1007/s10706-021-01768-1 (Crossref)

Bourenane, H., Bouhadad, Y., Guettouche, M. S., & Braham, M. (2015). GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bulletin of Engineering Geology and the Environment, 74, 337–355. https://doi.org/10.1007/s10064-014-0616-6 (Crossref)

Bourenane, H., Guettouche, M. S., Bouhadad, Y., & Braham, M. (2016). Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arabian Journal of Geosciences, 9, 1–24. (Crossref)

Bui, D. T., Tsangaratos, P., Nguyen, V. T., Van Liem, N., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426. https://doi.org/10.1016/j.catena.2019.104426 (Crossref)

Coiffait, P. E. (2012). Un bassin post-nappes dans son cadre structural: l’exemple du bassin de Constantine (Algérie nord-orientale) [doctoral dissertation]. Université Henri Poincaré Nancy.

Chettah, W., Mezhoud, S., Baadeche, M., & Hadji, R. (2024). Fuzzy logic-based landslide susceptibility mapping in earthquake-prone areas: a case study of the Mila Basin, Algeria. Russian Geology and Geophysics, 65(10), 1252–1270. https://doi.org/10.2113/RGG20244699 (Crossref)

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W. Z., & JTC-1 Joint Technical Committee on Landslides and Engineered Slopes. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98. https://doi.org/10.1016/j.enggeo.2008.03.022 (Crossref)

Glade, T. (2003). Vulnerability assessment in landslide risk analysis. Die Erde, 134(2), 123–146.

Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98, 239–267. https://doi.org/10.1007/s00703-007-0262-7 (Crossref)

Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Landslide Hazard Assessment in the Staffora Basin, Northern Italian Apennines. Geomorphology, 72, 272–299. https://doi.org/10.1016/j.geomorph.2005.06.002 (Crossref)

Harbi, A. (2001). Analyse de la sismicité et mise en évidence d’accidents actifs dans le Nord Est Algérien [master thesis]. USTHB.

Harbi, A. (2007). Seismicity, seismic input and site effects in the Sahel–Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27, 427–447. https://doi.org/10.1016/j.soildyn.2006.10.002 (Crossref)

Harbi, A., Benouar, D., & Benhallou, H. (2003). Re-appraisal of seismicity and seismotectonics in the north-eastern Algeria Part I: Review of historical seismicity. Journal of Seismology, 7, 115–136. https://doi.org/10.1023/A:1021212015935 (Crossref)

Ladjel, Z., Zahri, F., Hadji, R., & Hamed, Y. (2025). Probabilistic based rockfall risk assessment for a coastal cliff in Northern Algeria. Environmental Engineering and Management Journal, 24(1), 23–41. https://doi.org/10.30638/eemj.2025.003 (Crossref)

Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661–672. https://doi.org/10.1007/s12040-006-0004-0 (Crossref)

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R. & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225 (Crossref)

Mezhoud, L., & Benazzouz, M. T. (2018). Evaluation de la susceptibilité à l’aléa «glissement de terrain» par l’utilisation de l’outil SIG: Application à la ville de Constantine (Algérie). Sciences & Technologie. D, Sciences de la terre, 47, 91–103. https://revue.umc.edu.dz/d/article/view/2949

Mokrane, A., Aït Messaoud, A., Sébaï, A., Menia, N., Ayadi, A., & Bezzeghoud, M. (1994). Les séismes en Algérie de 1365 à 1992 [Earthquakes in Algeria from 1365 to 1992]. ESS/CRAAG.

Office National de la Météorologie [ONM]. (2024). Données de précipitations de constantine (1975–2017).

Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., Wenzel H., & Dominey-Howes, D. (2017). Elements at risk as a framework for assessing the vulnerability of communities to landslides. Natural Hazards and Earth System Sciences, 17(6), 765–779. (Crossref)

Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301–320. https://doi.org/10.1007/s12524-010-0020-z (Crossref)

Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. International Journal of Remote Sensing, 23(2), 357–369. https://doi.org/10.1080/01431160010014260 (Crossref)

Samy, M., Besma, M., Saber, M., & Sami, Z. (2019, December 9-10). Cartographie géotechnique, des risques de gonflement des argiles dans la Wilaya de Mila. 1st International Congress on Advances in Geotechnical Engineering and Construction Management ICAGECM, Skikda, Algeria.

Taib, H., Hadji, R., & Zighmi, K. (2025). Geospatial analysis of neotectonics in the Jebel Gustar Mountain northeastern Algeria. Journal of Mountain Science, 22, 391–403. https://doi.org/10.1007/s11629-024-9170-2 (Crossref)

USTHB-FST-GAT-DUC Constantine. (2002). Levé géologique.

Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010 (Crossref)

Wisner, B., Blaikie, P., Cannon, T. & Davis, I. (2004). At risk: natural hazards, people’s vulnerability and disasters. Routledge. https://www.preventionweb.net/files/670_72351.pdf

Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72(1), 1–12. https://doi.org/10.1016/j.catena.2007.01.003 (Crossref)

Statistics

Downloads

Download data is not yet available.