Main Article Content
Traffic noise is one of the most significant forms of environmental pollution in urban areas. It can have negative impacts on both road users and residents living near highways. The high growth rate of motor vehicles from year to year in Kendari City has triggered an increase in traffic noise levels. This study aims to analyze the distribution of traffic noise across various land uses by utilizing real-time data. Noise measurements were conducted using a sound level meter (SLM) at several sampling points representing residential, commercial, service, office, school, and public facility areas. The SLM was positioned 1 m and 10 m away from the edge of the road. According to the findings of the analysis, Kendari City’s traffic noise levels have exceeded the environmental noise threshold. The study found that the main factors contributing to high noise levels are traffic volume and low vehicle speed. Areas with high traffic volumes, such as service, commercial, and office zones, produce higher noise exposure compared to other land use types. Land uses located near social activity centers are significantly impacted by noise exposure. Real-time data-based noise mapping is highly effective in designing sustainable urban transportation and spatial planning policies in cities with heterogeneous traffic categories.
Article Details
Adza, W. K., Hursthouse, A. S., Miller, J., & Boakye, D. (2022). Exploring the combined association between road traffic noise and air quality using QGIS. International Journal of Environmental Research and Public Health, 19(24), 17057. https://doi.org/10.3390/ijerph192417057 (Crossref)
Alam, P., Ahmad, K., Afsar, S. S., & Akhtar, N. (2020). Noise monitoring, mapping, and modelling Studies – A review. Journal of Ecological Engineering, 21(4), 82–93. https://doi.org/10.12911/22998993/119804 (Crossref)
BPS – Statistics Kendari Municipality (2024). Kendari municipality in figures 2024. BPS – Statistics Kendari Municipality.
Dewi, P. M., Prasetyo, L. B. B., & Armijaya, H. (2023). Analisis tingkat kebisingan lalu lintas berdasarkan variasi guna lahan (Studi kasus: Jalan AH Nasution Kota Metro). Jurnal TESLINK: Teknik Sipil Dan Lingkungan, 5(1), 91–98. https://doi.org/10.52005/teslink.v5i1.156 (Crossref)
Govea, J., Gaibor-Naranjo, W., Sanchez-Viteri, S., & Villegas-Ch, W. (2024). Integration of data and predictive models for the evaluation of air quality and noise in urban environments. Sensors, 24(2), 1–18. https://doi.org/10.3390/s24020311 (Crossref)
Graziuso, G., Francavilla, A. B., Mancini, S., & Guarnaccia, C. (2022). Application of the Harmonica Index for noise assessment in different spatial contexts. Journal of Physics: Conference Series, 2162(1), 1–10. https://doi.org/10.1088/1742-6596/2162/1/012006 (Crossref)
Helal, D., Dubouloz, S., Mortensen, J., Baldi, P., & Royo, P. (2019). Real-time 3D environmental noise monitoring and mapping using a large-scale Internet of Things. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 259(2), 7937–7948.
Ibili, F., Adanu, E. K., Adams, C. A., Andam-Akorful, S. A., Turay, S. S., & Ajayi, S. A. (2021). Traffic noise models and noise guidelines: A review. Noise & Vibration Worldwide, 53(1–2), 65–79. https://doi.org/10.1177/09574565211052693 (Crossref)
Keputusan Menteri Negara Lingkungan Hidup Nomor KEP-48/MENLH/11/1996. Tentang Baku Tingkat Kebisingan [Decree of the State Minister of Environment of the Republic of Indonesia 48/MENLH/11/1996 concerning noise level standards].
Khedaywi, T., Alkofahi, N., & Alomari, L. (2021). Development of a statistical model for predicting traffic noise (case study: Irbid-Jordan). Jordan Journal of Civil Engineering, 15(4), 551–561.
Lakawa, I., Hujiyanto, Sulaiman, & Haryono. (2022). The determination of noise area criteria based on prediction distance. International Journal of Development Research, 12(11), 60589–60593.
Lakawa, I., Hujiyanto, & Haryono. (2023). A study of heterogeneous traffic noise trigger parameters for urban areas. Technium: Romanian Journal of Applied Sciences and Technology, 13, 79–87. https://doi.org/10.47577/technium.v13i.9572 (Crossref)
Lakawa, I, Sammang, L., Selintung, M., & Hustim, M. (2015, October 7–8). Perilaku Hubungan Interaksi antara Kepadatan Lalu Lintas, Kecepatan, dan Kebisingan (Studi Kasus: Jalan Arteri dan Kolektor Kota Kendari). Prosiding Konferensi Nasional Teknik Sipil, Makassar.
Lakawa, I., Sufrianto, S., Syamsuddin, S. & Rahman, I. (2023). Pengaruh Karakteristik Lalu Lintas Terhadap Kebisingan Jalan Raya. Sultra Civil Engineering Journal, 4(2), 123–132. https://doi.org/10.54297/sciej.v4i2.525 (Crossref)
Lakawa, I., Syamsuddin, Hujiyanto, & Ilham, V. A. (2023). Noise mapping due to motor vehicle activities in the by-pass ring road area of the City of Kendari. Scientific Review Engineering and Environmental Sciences, 32(4), 392–406. https://doi.org/10.22630/srees.5550 (Crossref)
Lakawa, I., Syamsuddin, & Sudarta. (2024). The influence of road service quality on traffic noise levels. International Journal of Management and Education in Human Development, 4(4), 1439–1445.
Lee, H. M., Luo, W., Xie, J., & Lee, H. P. (2022). Urban traffic noise mapping using building simplification in the Panyu District of Guangzhou City, China. Sustainability, 14(8), 4465. https://doi.org/10.3390/su14084465 (Crossref)
Lezhneva, E., Vakulenko, K., & Galkin, A. (2019). Assessment of traffic noise pollution due to urban residential road transport. Romanian Journal of Transport Infrastructure, 8(1), 34–52. https://doi.org/10.2478/rjti-2019-0002 (Crossref)
Liu, J., Sun, S., Tang, K., Fan, X., Lv, J., Fu, Y., Feng, X., & Zeng, L. (2025). IoT-based airport noise perception and monitoring: multi-source data fusion, spatial distribution modeling, and analysis. Sensors, 25(8), 1–29. https://doi.org/10.3390/s25082347 (Crossref)
Margaritis, E., Kang, J., Aletta, F., & Axelsson, Ö. (2020). On the relationship between land use and sound sources in the urban environment. Journal of Urban Design, 25(5), 626–642. https://doi.org/10.1080/13574809.2020.1730691 (Crossref)
Meller, G., Lourenço, W. M. de, Melo, V. S. G. de, & Campos Grigoletti, G. de (2023). Use of noise prediction models for road noise mapping in locations that do not have a standardized model: A short systematic review. Environmental Monitoring and Assessment, 195(6), 740. https://doi.org/10.1007/s10661-023-11268-9 (Crossref)
Othman, E., Cibilić, I., Poslončec-Petrić, V., & Saadallah, D. (2024). Investigating noise mapping in cities to associate noise levels with sources of noise using crowdsourcing applications. Urban Science, 8(1), 13. https://doi.org/10.3390/urbansci8010013 (Crossref)
Sofianopoulos, S., Stigas, S., Stratakos, E., Tserpes, K., Faka, A., & Chalkias, C. (2024). Citizens as environmental sensors: noise mapping and assessment on Lemnos Island, Greece, using VGI and web technologies. European Journal of Geography, 15(2), 106–119. https://doi.org/10.48088/ejg.s.sof.15.2.106.119 (Crossref)
Sonaviya, D. R., & Tandel, B. N. (2019). A review on GIS-based approach for road traffic noise mapping. Indian Journal of Science and Technology, 14(12), 1–6. https://doi.org/10.17485/ijst/2019/v12i14/132481 (Crossref)
Starke, R. A., Gerges, R. N. C., Dias, R. A., Noll, V., Hamad, A. F., Laporte, J. V. F., & Ratola, F. C. (2024). Real time industrial noise mapping with IoT Systems. International Journal of Computer Applications, 186(43), 33–39. (Crossref)
Subramani, T., Kavitha, M., & Sivaraj, K. P. (2012). Modelling of traffic noise pollution. International Journal of Engineering Research and Applications, 2(3), 3175–3182.
Zambon, G., Roman, H. E., Smiraglia, M., & Benocci, R. (2018). Monitoring and prediction of traffic noise in large urban areas. Applied Sciences, 8(2), 1–17. https://doi.org/10.3390/app8020251 (Crossref)
Downloads
- Irwan Lakawa, Syamsuddin, Hujiyanto, Vickky A. Ilham, Noise mapping due to motor vehicle activities in the by-pass ring road area of the city of Kendari , Scientific Review Engineering and Environmental Sciences (SREES): Vol. 32 No. 4 (2023)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Knowledge base