Comparative assessment of the physico-mechanical properties of crumb rubber concretes developed with natural and dune sands

Main Article Content

Amar MEZIDI
Salem MERABTI


Keywords : crumb rubber, dune sand concrete, ordinary concrete, physical property, mechanical property
Abstract

This paper investigates the incorporation of crumb rubber from recycled tires into ordinary concrete (OCCR) and dune sand concrete (SCCR), analyzing the effect of incorporation rates ranging from 1% to 5% relative to the sand mass. A comparative study was conducted focusing mainly on apparent density, compactness, mechanical strengths, and the elastic modulus in the linear regime. The results show that the addition of crumb rubber in concrete leads to a reduction in both compressive strength and flexural tensile strength. For an incorporation rate of 3%, Young’s modulus decreases significantly in SCCR compared to OCCR. Specifically, the elastic modulus is E = 24.7 GPa for OCCR and E = 14.23 GPa for SCCR, representing a reduction of approximately 42%.


 

Article Details

How to Cite
MEZIDI, A., & MERABTI, S. (2025). Comparative assessment of the physico-mechanical properties of crumb rubber concretes developed with natural and dune sands. Scientific Review Engineering and Environmental Sciences (SREES), 34(4), 417–435. https://doi.org/10.22630/srees.10786
References

Abdelaleem, A., Moawad, M., El-Emam, H., Salim, H., & Sallam, H. E. M. (2024). Long term behavior of rubberized concrete under static and dynamic loads. Case Studies in Construction Materials, 20, e03087. https://doi.org/10.1016/j.cscm.2024.e03087 (Crossref)

Aghamohammadi, O., Mostofinejad, D., Mostafaei, H., & Abtahi, M. (2023). Mechanical properties and impact resistance of concrete pavement containing crumb rubber, International Journal of Geomechanics, 24(1), 04023211. https://doi.org/10.1061/IJGNAI.GMENG-7620 (Crossref)

Agrawal, D., Ansari, K., Waghe, U., Goel, M., Raut, S. P., Warade, H., Althaqafi, E., Islam, S. & Al-Sareji, O. J. (2025). Exploring the impact of pretreatment and particle size variation on properties of rubberized concrete. Scientific Reports, 15(1), 11394. https://doi.org/10.1038/s41598-025-96402-y (Crossref)

Algerian Institute of Standardization [IANOR], (2013). Composition, specifications and criteria for common cements (NA 442).

Al-Harthy, A. S., Halim, M. A., Taha, R., & Al-Jabri, K. S. (2007). The properties of concrete made with fine dune sand. Construction and Building Materials, 21(8), 1803‒1808. https://doi.org/10.1016/j.conbuildmat.2006.05.053 (Crossref)

Assaggaf, R., Maslehuddin, M., Al-Osta, M. A., Al-Dulaijan, S. U., & Ahmad, S. (2022). Properties and sustainability of treated crumb rubber concrete. Journal of Building Engineering, 51, 104250. https://doi.org/10.1016/j.jobe.2022.104250 (Crossref)

Azunna, S. U., Aziz, F. N., Rashid, R. S., & Bakar, N. B. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237. https://doi.org/10.1016/j.clema.2024.100237 (Crossref)

Bulut, H. A., & Kandil, U. (2024). Mechanical properties of cement-based composites incorporating eco-friendly aggregate of waste rubber. Revista de la Construcción, 23(2), 246‒270. http://dx.doi.org/10.7764/rdlc.23.2.246 (Crossref)

Du, T., Yang, Y., Cao, H., Si, N., Kordestani, H., Sktani, Z. D. I., Arab, A. & Zhang, C. (2024). Rubberized concrete: effect of the rubber size and content on static and dynamic behavior. Buildings, 14(6), 1541. https://doi.org/10.3390/buildings14061541 (Crossref)

Eisa, A. M., Tahwia, A. M., Osman, Y. A., & Elemam, W. E. (2025). Characteristics of bacteria based self healing rubberized concrete for sustainable and durable construction. Scientific Reports, 15(1), 1‒16. https://doi.org/10.1038/s41598-025-97174-1 (Crossref)

Elbialy, S., Ibrahim, W., Mahmoud, S., Mamdouh, H., Ayash, N. M., & El-Kassas, A. (2024). Mechanical characteristics and structural performance of rubberized concrete: Experimental and analytical analysis. Case Studies in Construction Materials, 21, e03727. https://doi.org/10.1016/j.cscm.2024.e03727 (Crossref)

El-Nemr, A., & Shaaban, I. G. (2024). Assessment of special rubberized concrete types utilizing portable non-destructive tests. NDT, 2(3), 160‒189. https://doi.org/10.3390/ndt2030010 (Crossref)

Elshazly, F. A., Mustafa, S. A., & Fawzy, H. M. (2020). Rubberized concrete properties and its structural engineering applications – An overview. The Egyptian International Journal of Engineering Sciences and Technology, 30, 1‒11. https://doi.org/10.21608/eijest.2020.35823.1000 (Crossref)

Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J., & Youssf, O. (2021). Dynamic performance of rubberised concrete and its structural applications – An overview. Engineering Structures, 234, 111990. https://doi.org/10.1016/j.engstruct.2021.111990 (Crossref)

European Committee for Standardization [CEN]. (2016). Methods of testing cement. Part 1: Determination of strength (EN 196-1:2016).

European Committee for Standardization [CEN]. (2019). Testing hardened concrete. Part 2: Making and curing specimens for strength tests (EN 12390-2:2019-07).

European Committee for Standardization [CEN]. (2021). Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compression (EN 12390-13:2021).

Ge, J., Mubiana, G., Gao, X., Xiao, Y., & Du, S. (2024). Research on static mechanical properties of high-performance rubber concrete. Frontiers in Materials, 11, 1426979. https://doi.org/10.3389/fmats.2024.1426979 (Crossref)

Grinys, A., Balamurugan, M., Augonis, A., & Ivanauskas, E. (2021). Mechanical properties and durability of rubberized and glass powder modified rubberized concrete for whitetopping structures. Materials, 14(9), 2321. https://doi.org/10.3390/ma14092321 (Crossref)

Han, Y., Lv, Z., Bai, Y., Han, G., & Li, D. (2023). Experimental study on the mechanical properties of crumb rubber concrete after elevated temperature. Polymers, 15(14), 3102. https://doi.org/10.3390/polym15143102 (Crossref)

Haridharan, M. K., Murugan, R. B., Natarajan, C., & Muthukannan, M. (2017). Influence of waste tyre crumb rubber on compressive strength, static modulus of elasticity and flexural strength of concrete. IOP Conference Series: Earth and Environmental Science, 80(1), 012014. https://doi.org/10.1088/1755-1315/80/1/012014 (Crossref)

Hernández, E., Liu, R., Palermo, A., Chiaro, G., & Scott, A. (2021, October 14‒16). Rubberised concrete: material characterisation and mechanical behaviour. NZ Concrete Conference, Rotorua, New Zealand.

Hisbani, N., Shafiq, N., Shams, M. A., Farhan, S. A., & Zahid, M. (2025). Properties of concrete containing crumb rubber as partial replacement of fine aggregate – a review. Hybrid Advances, 10, 100481. https://doi.org/10.1016/j.hybadv.2025.100481 (Crossref)

Kevin, B., Sarker, P. K., & Madhavan, M. K. (2025). Performance assessment and microstructural characterization of combined surface, chemical and polymer treated crumb rubber concrete. Scientific Reports, 15(1), 15853. https://doi.org/10.1038/s41598-025-97189-8 (Crossref)

Li, D., Mills, J. E., Benn, T., Ma, X., Gravina, R., & Zhuge, Y. (2016). Review of the performance of high-strength rubberized concrete and its potential structural applications. Advances in Civil Engineering Materials, 5(1), 149‒166. https://doi.org/10.1520/ACEM20150026 (Crossref)

Liu, H., Wang, X., Jiao, Y., & Sha, T. (2016). Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials, 9(3), 172. https://doi.org/10.3390/ma9030172 (Crossref)

Lu, Y., Li, C., Zhang, X., Huang, X., & Zhao, Z. (2022). A workability characterization of innovative rubber concrete as a grouting material. Materials, 15(15), 5319. https://doi.org/10.3390/ma15155319 (Crossref)

Merabti, S., Kenai, S., Belarbi, R., & Khatib, J. (2021). Thermo-mechanical and physical properties of waste granular cork composite with slag cement. Construction and Building Materials, 272, 121923. https://doi.org/10.1016/j.conbuildmat.2020.121923 (Crossref)

Mezidi, A., Merabti, S., Benyamina, S., & Sadouki, M. (2023). Effect of substituting white cement with ceramic waste powders (CWP) on the performance of a mortar based on crushed sand. Advances in Materials Science, 23(4), 123‒133. https://doi.org/10.2478/adms-2023-0026 (Crossref)

Mezidi, A., Merabti, S., Guelmine, L., & Meziani, B. (2025). Effect of crumb rubber on the fresh and hardened properties of dune sand concrete. Advances in Materials Science, 25(2), 5‒16. https://doi.org/10.2478/adms-2025-0008 (Crossref)

Mohammed, B., & Azmi, N. J. (2011). Failure mode and modulus elasticity of concrete containing recycled tire rubber. The Journal of Solid Waste Technology and Management, 37(1), 16‒24. https://doi.org/10.5276/JSWTM.2011.16 (Crossref)

Moulay-Ali, A., Abdeldjalil, M., & Khelafi, H. (2021). An experimental study on the optimal compositions of ordinary concrete based on corrected dune sand – Case of granular range of 25 mm. Case Studies in Construction Materials, 14, e00521. https://doi.org/10.1016/j.cscm.2021.e00521 (Crossref)

Naito, C., States, J., Jackson, C., & Bewick, B. (2014). Assessment of crumb rubber concrete for flexural structural members. Journal of Materials in Civil Engineering, 26(10), 04014075. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000986 (Crossref)

Noor, N. M., Yamamoto, D., Hamada, H., & Sagawa, Y. (2016). Rubberized concrete durability against abrasion. MATEC Web of Conferences, 47, 01006. https://doi.org/10.1051/matecconf/20164701006 (Crossref)

Nuzaimah, M., Sapuan, S. M., Nadlene, R., & Jawaid, M. (2018). Recycling of waste rubber as fillers: A review. IOP Conference Series: Materials Science and Engineering, 368, 012016. https://doi.org/10.1088/1757-899X/368/1/012016 (Crossref)

Park, S., Lee, E., Ko, J., Yoo, J., & Kim, Y. (2018). Rheological properties of concrete using dune sand. Construction and Building Materials, 172, 685‒695. https://doi.org/10.1016/j.conbuildmat.2018.03.192 (Crossref)

Pham, T. M., Elchalakani, M., Hao, H., Lai, J., Ameduri, S., & Tran, T. M. (2019). Durability characteristics of lightweight rubberized concrete. Construction and Building Materials, 224, 584‒599. https://doi.org/10.1016/j.conbuildmat.2019.07.048 (Crossref)

Serikma, M., Benahmed, B., Kennouche, S., Mohd Hashim, M. H., & Merabti, S. (2024). Valorization of glass powder as filler in self-compacting concrete. Scientific Review Engineering and Environmental Sciences, 33(3), 261‒277. https://doi.org/10.22630/srees.9810 (Crossref)

Singaravel, D. A., Veerapandian, P., Rajendran, S., & Dhairiyasamy, R. (2024). Enhancing high-performance concrete sustainability: integration of waste tire rubber for innovation. Scientific Reports, 14(1), 4635. https://doi.org/10.1038/s41598-024-55485-9 (Crossref)

Siringi, G. M., Abolmaali, A., & Aswath, P. B. (2013). Properties of concrete with crumb rubber replacing fine aggregates (sand). Advances in Civil Engineering Materials, 2(1), 218‒232. https://doi.org/10.1520/ACEM20120044 (Crossref)

Sofi, F. A., Joo, M. R., & Rajak, S. (2024). Experimental study on crumb-rubberized concrete: Mechanical properties and SEM analysis. EasyChair Preprint. https://easychair.org/publications/preprint/j2Rf/open

Youssf, O., Mills, J. E., Ellis, M., Benn, T., Zhuge, Y., Ma, X., & Gravina, R. J. (2022). Practical application of crumb rubber concrete in residential slabs. Structures, 36, 837‒853. https://doi.org/10.1016/j.istruc.2021.12.062 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Most read articles by the same author(s)