Main Article Content
This study examines the condition and environmental impact of abandoned peatland quarries in Lithuania. Using spatial data and field investigations, we identified 33 abandoned peat quarry sites covering over 3,854 ha, which were abandoned between 1940 and 2020. Detailed field assessments were conducted at each abandoned peatland quarry to evaluate the peat depth, pH, carbon-to-nitrogen ratio, decomposition, water table levels, and wood volume. Despite past extraction, many sites still contain substantial peat layers along with significant carbon and water storage potential. However, ongoing drainage continues to drive peat loss and carbon dioxide emissions. We estimate that peat loss from extraction totaled 77.5 million m3, which equates to a current value of €899 million in revenue. Nonetheless, the abandoned peatland quarries still host peat deposits ranging from 0.5 m to 2 m in depth. The drying and degradation of the peatlands has also reduced the water storage capacity across the 33 study sites. This loss is estimated at approx. 62 million liters of water, which equals approx. €33 million. This substantially affects local hydrology and increases the vulnerability to drought, fire, flood and natural biodiversity. Carbon emissions from drained peat soils are also substantial. We estimate approx. 14.2 t CO2 emissions equaling €813 million were lost from peat extraction alone. These emissions are often unreported if such areas are classified simply as “forests.” Our findings highlight the need for active restoration, particularly rewetting, to stop further degradation. Rewetting would reduce emissions, improve water retention, and support biodiversity recovery while offering clear opportunities to align peatland restoration with EU climate and nature goals.
Article Details
Agricultural Data Center [ŽŪDC]. (2025). Dirv_DR10LT – spatial data set of soil of the territory of the Republic of Lithuania at scale 1:10 000 [Data set]. http://data.europa.eu/88u/dataset/https-data-gov-lt-datasets-2966-?
Boers, A. M., Frieswyk, C. B., Verhoeven, J. T. A., & Zedler, J. B. (2006). Contrasting approaches to the restoration of diverse vegetation in herbaceous wetlands. In R. Bobbink, B. Beltman, J. T. A. Verhoeven, & D. F. Whigham (Eds.), Wetlands: functioning, biodiversity conservation, and restoration (pp. 225–246). Springer. (Crossref)
Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. EU Biodiversity Strategy for 2030: Bringing nature back into our lives (COM/2020/380 final). Brussels, 20.5.2020.
Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. EU Soil Strategy for 2030: Reaping the benefits of healthy soils for people, food, nature and climate (COM/2021/699 final). Brussels, 17.11.2021.
Craft, C. (2015). Creating and restoring wetlands: From theory to practice. Elsevier. (Crossref)
Ghezelayagh, P., Oleszczuk, R., Stachowicz, M., Eini, M. R., Kamocki, A., Banaszuk, P., & Grygoruk, M. (2024). Developing a remote-sensing-based indicator for peat soil vertical displacement: A case study in the Biebrza Valley, Poland. Ecological Indicators, 166, 112305. https://doi.org/10.1016/j.ecolind.2024.112305 (Crossref)
Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1(2), 182–195. https://doi.org/10.2307/1941811 (Crossref)
Grigaliunas, V., Jarašius, L., Zableckis, N., Dapkuniene, K., Manton, M., Kazanaviciute, V., & Sendžikaitė, J. (2023). Miškuose esančių pažeistų durpynų sutvarkymo galimybių studija. Miško Mokslo Darbas. https://am.lrv.lt/media/viesa/saugykla/2024/1/UeLJMXgcIl8.pdf
Grzywna, A. (2017). The degree of peatland subsidence resulting from drainage of land. Environmental Earth Sciences, 76(16), 559. https://doi.org/10.1007/s12665-017-6869-1 (Crossref)
Haapalehto, T., Juutinen, R., Kareksela, S., Kuitunen, M., Tahvanainen, T., Vuori, H., & Kotiaho, J. S. (2017). Recovery of plant communities after ecological restoration of forestry-drained peatlands. Ecology and Evolution, 7(19), 7848–7858. https://doi.org/10.1002/ece3.3243 (Crossref)
Hammer, Ø. (2023). Reference manual. Paleontological Statistics (PAST) Version 4.13. Natural History Museum, University of Oslo.
Hofer, B., Huwald, G., & Lehmann, J. (2012). Studie zur Situation des Torfabbaus im Baltikum. TELMA-Berichte der Deutschen Gesellschaft für Moor-und Torfkunde, 42, 43‒56. https://e-docs.geo-leo.de/server/api/core/bitstreams/3c3cfebd-c05b-440d-b100-51841a51c1fc/content
Holden, J. (2005). Peatland hydrology and carbon release: Why small-scale process matters. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2891–2913. https://doi.org/10.1098/rsta.2005.1671 (Crossref)
Ikkala, L., Ronkanen, A. K., Utriainen, O., Kløve, B., & Marttila, H. (2021). Peatland subsidence enhances cultivated lowland flood risk. Soil and Tillage Research, 212, 105078. https://doi.org/10.1016/j.still.2021.105078 (Crossref)
IndexBox. (2024). Lithuania – Peat – Market Analysis, Forecast, Size, Trends and Insights. https://www.indexbox.io/store/lithuania-peat-market-analysis-forecast-size-trends-and-insights/
Intergovernmental Panel on Climate Change [IPCC]. (2014). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC. https://www.ipcc-nggip.iges.or.jp/public/wetlands/
International Carbon Action Partnership [ICAP]. (2025) ICAP Allowance Price Explorer. https://icapcarbonaction.com/en/ets-prices
Jarašius, L., Etzold, J., Truus, L., Purre, A-H., Sendžikaitė, J., Strazdiņa, L., Zableckis, N., Pakalne, M., Bociąg, K., Ilomets, M., Herrmann, A., Kirschey, T., Pajula, R., Pawlaczyk, P., Chlost, I., Cieśliński, R., Gos, K., Libauers, K., Sinkevičius, Z., & Jurema, L. (2022). Handbook for assessment of greenhouse gas emissions from peatlands. Lithuanian Fund for Nature.
Jarašius, L., Lygis, V., Sendžikaitė, J., & Pakalnis, R. (2015). Effect of different hydrological restoration measures in Aukštumala raised bog damaged by peat harvesting activities. Baltic Forestry, 21(2), 192−203.
Joosten, H. (2009). 30 human impacts: Farming, fire, forestry and fuel. In E. Maltby & T. Barker (Eds.), The wetlands handbook. Blackwell Science. (Crossref)
Joosten, H., & Clarke, D. (2002). Wise use of mires and peatlands: Background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society.
Jurasinski, G., Barthelmes, A., Byrne, K. A., Chojnicki, B. H., Christiansen, J. R., Decleer, K., Fritz, Ch., Günther, A. B., Huth, V., Joosten, H., Juszczak, R., Juutinen, S., Kasimir, A., Klemedtsson, L., Koebsch, F., Kotowski, W., Kull, A., Lamentowicz, M., Lindgren, A., …, & Couwenberg, J. (2024). Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law. Ambio, 53(7), 970‒983. https://doi.org/10.1007/s13280-024-02016-5 (Crossref)
Kamocki, A. K., Manton, M., Rudbeck Jepsen, M., Stachowicz, M., Antochów, A., Grygoruk, M., & Banaszuk, P. (2025). Estimations of GHG emissions from drained peatlands: Accountability in the trans-border Neman River basin. https://dx.doi.org/10.2139/ssrn.5144113 (Crossref)
Karofeld, E., Jarašius, L., Priede, A., & Sendžikaitė, J. (2017). On the after‐use and restoration of abandoned extracted peatlands in the Baltic countries. Restoration Ecology, 25(2), 293‒300. https://doi.org/10.1111/rec.12436 (Crossref)
Kohlenberg, A. J., Turetsky, M. R., Thompson, D. K., Branfireun, B. A., & Mitchell, C. P. (2018). Controls on boreal peat combustion and resulting emissions of carbon and mercury. Environmental Research Letters, 13(3), 035005. https://doi.org/10.1088/1748-9326/aa9ea8 (Crossref)
Koska, I., Succow, M., Clausnitzer, U., Timmermann, T., & Roth, S. (2001). Vegetationskundliche Kennzeichnung von Mooren (topische Betrachtung). In M. Succow & H. Joosten (Eds.), Landschaftsökologische Moorkunde (pp. 112–184). Schweizerbart.
Leifeld, J. & Menichetti, L. (2018). The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03406-6 (Crossref)
Lithuanian State Forest Service [VMU]. (2021). Cadastral GIS database.
Liu, H., Price, J., Rezanezhad, F., & Lennartz, B. (2020). Centennial‐scale shifts in hydrophysical properties of peat induced by drainage. Water Resources Research, 56(10), e2020WR027538. https://doi.org/10.1029/2020WR027538 (Crossref)
Makrickas, E., Manton, M., Angelstam, P., & Grygoruk, M. (2023). Trading wood for water and carbon in peatland forests? Rewetting is worth more than wood production. Journal of Environmental Management, 341, 117952. https://doi.org/10.1016/j.jenvman.2023.117952 (Crossref)
Mander, Ü., Espenberg, M., Melling, L., & Kull, A. (2024). Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon. Biogeochemistry, 167(4), 523‒543. https://doi.org/10.1007/s10533-023-01103-1 (Crossref)
Manton, M., Makrickas, E., Banaszuk, P., Kołos, A., Kamocki, A., Grygoruk, M., Stachowicz, M., Jarašius, L., Zableckis, N., Sendžikaitė, J., Peters, J., Napreenko, M., Wichtmann, W., & Angelstam, P. (2021). Assessment and spatial planning for peatland conservation and restoration: Europe’s trans-border Neman River basin as a case study. Land, 10(2), 174. https://doi.org/10.3390/land10020174 (Crossref)
Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands. Wiley.
Oleszczuk, R., Łachacz, A., & Kalisz, B. (2022). Measurements versus estimates of soil subsidence and mineralization rates at peatland over 50 years (1966–2016). Sustainability, 14(24), 16459. https://doi.org/10.3390/su142416459 (Crossref)
Paavilainen, E., & Päivänen, J. (1995). Peatland forestry: Ecology and principles. Springer. https://doi.org/10.1007/978-3-662-03125-4 (Crossref)
Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., & Stringer, L. (2008). Assessment on peatlands, biodiversity and climate change: Main report. Global Environment Centre, Kuala Lumpur and Wetlands International.
Patel, N., Ieviņa, B., Kažmēre, D., Feofilovs, M., Kamenders, A., & Romagnoli, F. (2025). Towards resilient peatlands: integrating ecosystem-based strategies, policy frameworks, and management approaches for sustainable transformation. Sustainability, 17(8), 3419. https://doi.org/10.3390/su17083419 (Crossref)
Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU. OJ L 156, 19.6.2018, pp. 1–25.
Regulation of the European Parliament and of the Council on Nature Restoration and Amending Regulation (EU) 2022/869. OJ L, 2024/1991, 29.7.2024.
Rydin, H., Jeglum, J. K. & Bennett, K.D. (2013). The Biology of Peatlands. Oxford University Press. (Crossref)
Saulėnas, V. (1993). Durpės telkinių tyrimų ir išteklių klasifikavimo rekomendacijos. Valstybinė geologijos tarnyba prie statybos ir urbanistikos ministerijos. https://lgt.lrv.lt/media/viesa/saugykla/2024/2/yF1ekPwJPoI.pdf
Stachowicz, M., Manton, M., Abramchuk, M., Banaszuk, P., Jarašius, L., Kamocki, A., Povilaitis, A., Samerkhanova, A., Schäfer, A., Sendžikaitė, J., Wichtmann, W., Zableckis, N., & Grygoruk, M. (2022). To store or to drain – To lose or to gain? Rewetting drained peatlands as a measure for increasing water storage in the transboundary Neman River Basin. Science of The Total Environment, 829, 154560. https://doi.org/10.1016/j.scitotenv.2022.154560 (Crossref)
Succow, M., & Stegmann, H. (2001). Succow’s peatland classification. Greifswald University.
Tanneberger, F., & Wichtmann, W. (Eds.). (2011). Carbon credits from peatland rewetting: climate, biodiversity, land use. Schweizerbart Science Publishers.
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11‒14. https://doi.org/10.1038/ngeo2325 (Crossref)
United Nations Environment Programme [UNEP]. (2022). Global peatlands assessment: The state of the world’s peatlands. Evidence for Action toward the Conservation, Restoration, and Sustainable Management of Peatlands. Global Peatlands Initiative. United Nations Environment Programme. https://doi.org/10.59117/20.500.11822/41222 (Crossref)
Valatka, S., Stoškus, A., & Pileckas, M. (2018). Lietuvos Durpynai. Kiek Jų Turime, Ar Racionaliai Naudojame? Gamtos paveldo fondas.
Valstybinė saugomų teritorijų tarnyba prie Aplinkos ministerijos [VSTT]. (2025). Biologinės Įvairovės Duomenų Bazė. https://www.biomon.lt/
Wichmann, S., & Nordt, A. (2024). Unlocking the potential of peatlands and paludiculture to achieve Germany’s climate targets: obstacles and major fields of action. Frontiers in Climate, 6, 1380625. https://doi.org/10.3389/fclim.2024.1380625 (Crossref)
Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J. G., Chen, Y., Velde, I. R. van der, Aben, I., Chuvieco, E., Davis, S. J., Deeter, M., Hong, Ch., Kong, Y., Li, H., Lin, X., He, K., & Zhang, Q. (2023). Record-high CO2 emissions from boreal fires in 2021. Science, 379(6635), 912‒917. https://doi.org/10.1126/science.ade0805 (Crossref)
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.