Strength of eccentrically tensioned reinforced concrete structures with small eccentricities by normal sections

Main Article Content

Yevhen Dmytrenko
Ihor Yakovenko
Oleg Fesenko


Keywords : reinforced concrete structures, deformation model, two-line stress-strain diagram, non-eccentric tension, small eccentricities, normal cross sections
Abstract
It is implemented the method of normal rectangular sections slab (shell) reinforced concrete elements strength calculating with flat eccentric tensile strength using the deformation m ethod. The results of the calculation are analyzed for the case of eccentric tension with small eccentricities with varying next parameters: the height of the cross section and the reinforcement coefficient. It is investigated the character of diagrams condition change of section “N – ?c(1)” at gradual change of the stress-strain state from eccentric to the central tension. It is revealed that when the eccentricity of external forces decreases, the compressed zone of concrete decreases until its complete disappearance, and at rather small values of eccentricities of force application the balance between external and internal forces cannot be found by the method of current norms. An equilibrium is found between internal and external forces only at a two-digit diagram of the distribution of relative longitudinal deformations (in the case of a compressed zone). Variants of the given problem decision without considerable loss of calculations accuracy are offered, the most expedient of which is transition to algorithm of calculation by a method of limiting efforts. It was accepted as the basic in the previous building norms. The results of numerical calculations performed in the software complex “Lira-CAD” and the corresponding mathematical modeling confirmed the rationality and allowable accuracy of further calculations by this method.

Article Details

How to Cite
Dmytrenko, Y., Yakovenko, I., & Fesenko, O. (2021). Strength of eccentrically tensioned reinforced concrete structures with small eccentricities by normal sections. Scientific Review Engineering and Environmental Studies (SREES), 30(3), 424–438. https://doi.org/10.22630/PNIKS.2021.30.3.36
References

Babayev, V.M., Bambura, A.M., Pustovoitova, O.M. (2015). Praktichnij rozrahunok elementіv zalіzobetonnih konstrukcіj za DBN V.2.6-98:2009 u porіvnjannі z rozrahunkami za SNiP 2.03.01-84* і EN 1992-1-1 (Eurocode 2) [Practical calculation of elements of reinforced concrete structures according to DBN B.2.6-98: 2009 in comparison with calculations according to SNiP 2.03.01-84* and EN 1992-1-1 (Eurocode 2)]. Kharkiv: Publishing Golden Pages.

Bambura, A.M., Pavlikov, A.M., Kolchunov, V.I., Kochkarev, D.V. & Yakovenko, I.A. (2017). Praktichnij posіbnik іz rozrahunku zalіzobetonnih konstrukcіj za dіjuchimi normami Ukraїni (DBN V.2.6-98:2009) ta novimi modeljami deformuvannja, shho rozroblenі na їhnju zamіnu [Practical guide to the calculation of reinforced concrete structures – according to the current standards of Ukraine (DBN B.2.6-98:2009) and new models of deformation, designed to replace them]. Kyiv: Publishing Toloka.

Dem’Yanov, A., Kolchunov, V., Iakovenko, I. & Kozarez, A. (2019). Load bearing capacity calculation of the system “reinforced concrete beam – deformable base” under torsion with bending. E3S Web of Conferences, 97, 1-8. https://doi.org/10.1051/e3sconf/20199704059 (Crossref)

Dem’Yanov, A.I., Yakovenko, I.A. & Kolchunov, V.I. (2017). The development of universal short dual-console element for resistance of reinforced concrete structures under the action torsion with bending. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti, 370(4), 246-251.

Gosudarstvennyy stroitelnyy komitet SSSR [Gosstroy SSSR] (1989). Betonnye i zhelezobetonnye konstrukcii (SNiP 2.03.01-84*) [Concrete and reinforced concrete structures. Building codes and regulations (SNiP 2.03.01-84*)]. Moskva: CITP Gosstroya SSSR.

Iakovenko, I.A. & Kolchunov, V.I. (2017). The development of fracture mechanics hypo - theses applicable to the calculation of reinforced concrete structures for the second group of limit states. Journal of Applied Engineering Science, 15(3), 371-380. https://doi.org/10.5937/jaes15-14662 (Crossref)

Iakovenko, I., Kolchunov, V. & Lymar, I. (2017). Rigidity of reinforced concrete structures in the presence of different cracks. MATEC Web of Conferences, 116, 02016. EDP Sciences. https://doi.org/10.1051/matecconf/201711602016 (Crossref)

Karpenko, N.I. (1996). Obshhie modeli mehaniki zhelezobetona [General models of reinforced concrete mechanics]. Moskva: Publishing Stroiizdat.

Karpiuk, V., Somina, Yu. & Antonova, D. (2019). Calculation models of the bearing capacity of span reinforced concrete structures support zones materials. Science Forum: Actual Problems of Engineering Mechanics, 968, 209-226. https://doi.org/10.4028/www.scientific.net/MSF.968.209 (Crossref)

Karpyuk, V.M., Kostyuk, A.I. & Semina, Yu.A. (2018). General case of nonlinear deformation-strength model of reinforced concrete structures. Strength of Materials, 50(3), 453-464. https://doi.org/10.1007/s11223-018-9990-9 (Crossref)

Kolchunov, V.I., Dem’yanov, A., Iakovenko, I. & Garba, M. (2018). Bringing the experimental data of reinforced concrete structures crack resistance in correspondence with their theoretical values. Science & Construction, 1(15), 42-49. (Crossref)

Kolchunov, V.I. & Yakovenko, I.A. (2016). About the violation solid effect of reinforced concrete in reconstruction design of textile industry enterprises. Izvestiya Vysshikh Uchebnykh Zavedenii. Teknologiya Tekstil’noi Promyshlennosti, 2016(3), 258-263.

Kolchunov, V.I., Yakovenko, I.A. & Dmitrenko, E.A. (2016). The analytical core model formation of the nonlinear problem bond armature with concrete. Academic Journal. Industrial Machine Building, Civil Engineering, 2(47), 125-132.

Pavlikov, A., Kochkarev, D. & Harkava, O. (2019). Calculation of reinforced concrete members strength by new concept. In Proceedings of the fib Symposium 2019: Concrete – Innovations in Materials, Design and Structures (pp. 820-827). Lausanne: International Federation for Structural Concrete.

Shin, M., Bommer, A., Deaton, J. & Alemdar, B. (2009). Twisting moments in two-way slab. Concrete International, 78, 35-40.

Ukrayinskyy naukovo-doslidnyy i navchalnyy tsentr problem standartyzatsiyi, sertyfikatsiyi ta yakosti [SE UkrNDNC] (2011a). Betonnі ta zalіzobetonnі konstrukcії. Osnovnі polozhennja (DBN V.2.6-98:2009) [Concrete and reinforced concrete structures. Basic provisions (DBN V.2.6-98:2009)]. Kyiv: Minrehionbud Ukrayiny.

Ukrayinskyy naukovo-doslidnyy i navchalnyy tsentr problem standartyzatsiyi, sertyfikatsiyi ta yakosti [SE UkrNDNC] (2011b). Betonnі ta zalіzobetonnі konstrukcії z vazhkogo betonu. Pravila proektuvannja (DSTU B V.2.6-156:2010) [Concrete and reinforced concrete structures with heavy weight structural concrete. Design rules (DSTU B V.2.6- -156:2010)]. Kyiv: Minrehionbud Ukrayiny.

Wojciechowski, О.V., Zhuravsky, O.D. & Baida, D.M. (2017). Rozrahunok zalіzobetonnih konstrukcіj z vikoristannjam sproshhenih dіagram deformuvannja materіalіv (za DSTU B V.2.6-156:2010). Chastina 1. Rozrahunok za I grupoju granichnih stanіv [Calculation of reinforced concrete structures using simplified diagrams of deformation of materials (according to DSTU B V.2.6-156:2010). Part 1. Calculation of the 1st group of limit states]. Kyiv: Publishing KNUBA.

Statistics

Downloads

Download data is not yet available.
Recommend Articles