Solidification/stabilization of fly ash contaminated with radiocesium into geopolymers

Main Article Content

Šimon Rezbárik
Lenka Vavrincová
Martin Valica
Vanda Adamcová
Stanislav Sekely
Ján Rezbárik
Miroslav Horník


Keywords : fly ash, geopolymers, solidification/stabilization, 137Cs, leachability, compressive strength
Abstract

The main goal of this work was to evaluate the possibilities of solidifying fly ashes contaminated with 137Cs into geopolymer waste forms. In the first step, physico-chemical characterization of fly ash originating from the thermal power plant in Vojany (Slovak Republic) was carried out. Before the preparation of the geopolymer waste forms (ternary mixture Geocem, GEOFIX, s.r.o., Slovak Republic) containing fly ash at percentage weight proportions of 5%, 10%, 20%, and 40%, the fly ash was artificially contaminated with a 137CsCl solution. The 137Cs activity was measured by scintillation gamma-spectrometry. The leachability test conducted according to the American National Standard ANSI/ANS-16.1-1986 over five days showed that the geopolymer waste forms with fly ash contents of 5%, 10% and 20% met the required leachability index limits with values more than 6. The compressive strength test also confirmed that the samples with 40% ash content did not meet the required 5 MPa limit for their disposal as a radioactive waste.

Article Details

How to Cite
Rezbárik, Š., Vavrincová, L., Valica, M., Adamcová, V., Sekely, S., Rezbárik, J., & Horník, M. (2025). Solidification/stabilization of fly ash contaminated with radiocesium into geopolymers. Scientific Review Engineering and Environmental Sciences (SREES), 34(1), 55–72. https://doi.org/10.22630/srees.10058
References

Abass, M. R., Breky, M. M. E., & Maree, R. M. (2022). Removal of 137Cs and 90Sr from simulated low-level radioactive waste using tin(IV) vanadate sorbent and its potential hazardous parameters. Applied Radiation and Isotopes, 189, 110417. https://doi.org/10.1016/j.apradiso.2022.110417 (Crossref)

American National Standards Institute [ANSI]. (1986). Measurement of the leachability of solidified low-level radioactive wastes by a short-term test procedure (ANSI/ANS-16.1-1986). American National Standards Institute.

Amran, Y. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679 (Crossref)

Bhutta, A., Farooq, M., & Banthia, N. (2019). Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Construction and Building Materials, 215, 605‒612. https://doi.org/10.1016/j.conbuildmat.2019.04.210 (Crossref)

Carrillo-Beltran, R., Corpas-Iglesias, F. A., Terrones-Saeta, J. M., & Bertoya-Sol, M. (2021). New geopolymers from industrial by-products: Olive biomass fly ash and chamotte as raw materials. Construction and Building Materials, 272, 121924. https://doi.org/10.1016/j.conbuildmat.2020.121924 (Crossref)

Česká agentura pro standardizaci [ČSN]. (2017). Geotechnický průzkum a zkoušení – Laboratorní zkoušky zemin. Část 4: Stanovení zrnitosti [Geotechnical exploration and testing – Laboratory testing of soils. Part 4: Determination of grain size] (ČSN EN ISO 17892-4).

Chen, X., Zhang, J., Lu, M., Chen, B., Gao, S., Bai, J., Zhang, H., & Yang, Y. (2022). Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Construction and Building Materials, 314, 125650. https://doi.org/10.1016/j.conbuildmat.2021.125650 (Crossref)

Danish, Khan, S. U. D., & Ahmad, A. (2021). Testing the pollution haven hypothesis on the pathway of sustainable development: accounting the role of nuclear energy consumption. Nuclear Engineering and Technology, 53(8), 2746‒2752. https://doi.org/10.1016/j.net.2021.02.008 (Crossref)

Davidovits, J. (2011). Geopolymer chemistry and applications. Geopolymer Institute.

Durmuş, R. K. I., & Erenturk, S. A. (2023). Evaluation of adsorption behaviour of selenium onto zeolite-based composite barrier material for intermediate deep radioactive waste repository. Progress in Nuclear Energy, 158, 104604. https://doi.org/10.1016/j.pnucene.2023.104604 (Crossref)

Envinet (2024). Produkty. Envinet. https://www.nuvia.com/cz/subjekty/ceska-republika/

Enviroportál (2023). Radioactive waste. Enviroportál. https://www.enviroportal.sk/indicator/detail?id=805

Fu, S., He, P., Wang, M., Cui, J., Wang, M., Duan, X., Yang, Z., Jia, D., & Zhou, Y. (2020). Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage. Journal of Cleaner Production, 248, 119240. https://doi.org/10.1016/j.jclepro.2019.119240 (Crossref)

Gao, H., Liu, H., Liao, L., Mei, L., Zhang, F., Zhang, L., Li, S., & Lv, G. (2020). A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation. Construction and Building Materials, 251, 118888. https://doi.org/10.1016/j.conbuildmat.2020.118888 (Crossref)

GEOFIX (2024). Hazardous waste processing. GEOFIX, s.r.o. https://www.geofixsro.sk/

Hu, S., Zhong, L., Yang, X., Bai, H., Ren, B., Zhao, Y., Zhang, W., Ju, X., Wen, H., Mao, S., Tao, R., & Li, C. (2020). Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals. Construction and Building Materials, 254, 119273. https://doi.org/10.1016/j.conbuildmat.2020.119273 (Crossref)

Jain, S., Banthia, N., & Troczynski, T. (2022a). Leaching of immobilized cesium from NaOH-activated fly ash-based geopolymers. Cement and Concrete Composites, 133, 104679. https://doi.org/10.1016/j.cemconcomp.2022.104679 (Crossref)

Jain, S., Banthia, N., & Troczynski, T. (2022b). Conditioning of simulated cesium radionuclides in NaOH-activated fly ash-based geopolymers. Journal of Cleaner Production, 380, 134984. https://doi.org/10.1016/j.jclepro.2022.134984 (Crossref)

JAVYS (2024). Nuclear and decommissioning company. JAVYS. https://www.javys.sk/en/index.php

Kürklü, G., & Görhan, G. (2019). Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Construction and Building Materials, 217, 498–506. https://doi.org/10.1016/j.conbuildmat.2019.05.104 (Crossref)

Li, Q., Sun, Z., Tao, D., Xu, Y., Li, P., Cui, H., & Zhai, J. (2013). Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. Journal of Hazardous Materials, 262, 325–331. https://doi.org/10.1016/j.jhazmat.2013.08.049 (Crossref)

Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., & Colombo, P. (2022). Preparation, properties and applications of fly ash-based porous geopolymers: A review. Journal of Cleaner Production, 359, 132043. https://doi.org/10.1016/j.jclepro.2022.132043 (Crossref)

Liu, J., Xu, Y., Zhang, W., Ye, J., & Wang, R. (2024). Solidification performance and mechanism of typical radioactive nuclear waste by geopolymers and geopolymer ceramics: a review. Progress in Nuclear Energy, 169, 105106. https://doi.org/10.1016/j.pnucene.2024.105106 (Crossref)

Lv, X., Wang, K., He, Y., & Cui, X. (2019). A green drying powder inorganic coating based on geopolymer technology. Construction and Building Materials, 214, 441–448. https://doi.org/10.1016/j.conbuildmat.2019.04.163 (Crossref)

Microsoft Corporation (2016). Microsoft Excel. Microsoft Corporation.

Mukiza, E., Phung, Q. T., Frederickx, L., Jacques, D., Seetharam, S., & De Schutter, G. (2023). Co-immobilization of cesium and strontium containing waste by metakaolin-based geopolymer: Microstructure, mineralogy and mechanical properties. Journal of Nuclear Materials, 585, 154639. https://doi.org/10.1016/j.jnucmat.2023.154639 (Crossref)

Origin Lab Corporation (2016). Origin Pro 2016. Origin Lab Corporation.

Pu, S., Xu, B., Cai, G., Duan, W., Liu, Y., Lang, L., Shen, Z., & Yao, H. (2024). Strongly acidic lead contaminated soil solidification/stabilization using metakaolin-modified fly ash phosphoric-based geopolymer. Chemical Engineering Journal, 496, 154336. https://doi.org/10.1016/j.cej.2024.154336 (Crossref)

Singh, S., Aswath, M. U., & Ranganath, R. V. (2020). Performance assessment of red mud based geopolymer bricks and prisms. Journal of Building Engineering, 32, 101462. https://doi.org/10.1016/j.jobe.2020.101462 (Crossref)

Slovenský ústav technickej normalizácie [SUTN]. (2005). Kvalita pôdy. Stanovenie pH [Soil quality. Determination of pH] (STN ISO 10390). Slovenský ústav technickej normalizácie.

Tan, G., Liu, Z., Ma, X., Zheng, Z., Zhang, G., Wu, B., Zhang, L., & Liu, L. (2024). Phosphoric acid-activated metakaolin-based geopolymer: Optimizing P/A molar ratio to solidify Cs+ and Sr2+ in nuclear waste. Nuclear Engineering and Design, 424, 113300. https://doi.org/10.1016/j.nucengdes.2024.113300 (Crossref)

Teixeira, E. R., Camões, A., & Branco, F. G. (2022). Synergetic effect of biomass fly ash on improvement of high-volume coal fly ash concrete properties. Construction and Building Materials, 314, 125680. https://doi.org/10.1016/j.conbuildmat.2021.125680 (Crossref)

Tian, Q., Nakama, S., & Sasaki, K. (2019). Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Science of the Total Environment, 687, 1127–1137. https://doi.org/10.1016/j.scitotenv.2019.06.095 (Crossref)

Tian, Q., Wang, H., Pan, Y., Bai, Y., Chen, C., Yao, S., Guo, B., & Zhang, H. (2022). Immobilization mechanism of cesium in geopolymer: Effects of alkaline activators and calcination temperature. Environmental Research, 215, 114333. https://doi.org/10.1016/j.envres.2022.114333 (Crossref)

Wang, Y., Han, F., & Mu, J. (2018). Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Construction and Building Materials, 160, 818–827. https://doi.org/10.1016/j.conbuildmat.2017.12.006 (Crossref)

Zhan, L., Bo, Y., Lin, T., & Fan, Z. (2021). Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews, 34, 100630. https://doi.org/10.1016/j.esr.2021.100630 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Most read articles by the same author(s)