Inter-annual and seasonal patterns of precipitable water vapour over Malaysia from 1990-2019 based on MERRA-2 reanalysis

Main Article Content

Ezekiel K. Makama
Hwee S. Lim


Keywords : total precipitable water vapour, MERRA-2, monsoon, reanalysis
Abstract
In this study seasonal and inter-annual patterns as well as trend in the total precipitable water vapour (TPW) over Malaysia, based on a 30-year data from MERRA-2, have been evaluated using least square regression method. Indicator TPW revealed a pair of minima in February/August and maxima in May/November with highest and lowest long-term means found in East Malaysia. Long-term seasonal variability of TPW exhibited latitudinal dependency in both the NEM and SWM seasons. Indicator TPW showed respective southeast-northwest and southwest-northeast spatial distribution in West and East Malaysia, with the highest statistically significant positive trend found in the former.

Article Details

How to Cite
Makama, E. K., & Lim, H. S. (2021). Inter-annual and seasonal patterns of precipitable water vapour over Malaysia from 1990-2019 based on MERRA-2 reanalysis. Scientific Review Engineering and Environmental Sciences (SREES), 30(1), 208–218. https://doi.org/10.22630/PNIKS.2021.30.1.18
References

Ccoica-López, K., Pasapera-Gonzales, J. & Jimenez, J. (2019). Spatio-temporal variability of the precipitable water vapor over Peru through MODIS and ERA-Interim time series. Atmosphere, 10(4), 192. https://doi.org/10.3390/atmos10040192

Chen, B. & Liu, Z. (2016). Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. Journal of Geophysical Research: Atmospheres, 121(19), 11442-11462. https://doi.org/10.1002/2016JD024917

Durre, I., Vose, R.S. & Wuertz, D.B. (2008). Robust Automated Quality Assurance of Radiosonde Temperatures. Journal of Applied Meteorology and Climatology, 47(8), 2081-2095. https://doi.org/10.1175/2008JAMC1809.1

Durre, I., Williams, C.N., Yin, X. & Vose, R.S. (2009). Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. Journal of Geophysical Research Atmospheres, 114(5), 1-8. https://doi.org/10.1029/2008JD010989

Makama, E.K., Lim, H.S. & Abdullah, K. (2018). Parameterization of the middle and upper tropospheric water vapor from ATOVS observations over a tropical climate region. Journal of Atmospheric and Solar-Terrestrial Physics, 167, 190-199. https://doi.org/10.1016/j.jastp.2017.12.005

Malaysian Meteorological Department [MetMalaysia] (2009). Climate change scenarios for Malaysia 2001–2099. Petaling Jaya: Malaysian Meteorological Department.

Numata, S., Yasuda, M., Suzuki, R.O., Hosaka, T., Noor, N.S.M., Fletcher, C.D. & Hashim, M. (2013). Geographical pattern and environmental correlates of regional-scale general flowering in peninsular Malaysia. PLOS ONE, 8(11), e79095. https://doi.org/10.1371/journal.pone.0079095

Oki, T. & Musiake, K. (1994). Seasonal Change of the Diurnal Cycle of Precipitation over Japan and Malaysia. Journal of Applied Meteorology, 33(12), 1445-1463. https://doi.org/10.1175/1520-0450(1994)0332.0.CO;2

Parracho, A.C., Bock, O. & Bastin, S. (2018). Global IWV trends and variability in atmospheric reanalyses and GPS observations. Atmospheric Chemistry and Physics, 18(22), 16213-16237. https://doi.org/10.5194/acp18-16213-2018

Peng, G., Li, J., Chen, Y., Norizan, A.P. & Tay, L. (2006). High-resolution surface relative humidity computation using MODIS image in Peninsular Malaysia. Chinese Geographical Science, 16(3), 260-264. https://doi.org/10.1007/s11769-006-0260-6

Randel, D.L., Harr, T.H.V., Ringerud, M.A., Stephens, G.L., Greenwald, T.J. & Combs, C.L. (1996). A new Global Water Vapor dataset. Bulletin of the American Meteorological Society, 77(6), 1233-1246.

Salihin, S., Musa, T.A. & Radzi, Z.M. (2013). Spatio-temporal estimation of integrated water vapour over the Malaysian peninsula during monsoon season. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 42(4W5), 165-175. https://doi.org/10.5194/isprs-archives-XLII-4-W5-165-2017

Suparta, W. & Alhasa, K.M. (2016). Modeling of Precipitable Water Vapor Using an Adaptive Neuro-Fuzzy Inference System in the Absence of the GPS Network. American Meteorological Society, 55, 2283-2300. https://doi.org/10.1175/JAMC-D-15-0161.1

Suparta, W., Rahman, R. & Singh, M.S.J. (2014). Monitoring the variability of precipitable water vapor over the Klang Valley, Malaysia during flash flood. IOP Conference Series: Earth and Environmental Science, 20(1), 012057. https://doi.org/10.1088/1755-1315/20/1/012057

Tuller, S.E. (1977). The relationship between precipitable water vapor and surface humidity in New Zealand. Archiv Für Meteorologie, Geophysik Und Bioklimatologie. Serie A, 26(2-3), 197-212. https://doi.org/10.1007/BF02247163

Wong, C.L., Venneker, R., Uhlenbrook, S., Jamil, A.B.M. & Zhou, Y. (2009). Variability of rainfall in Peninsular Malaysia. Hydrology and Earth System Sciences Discussions, 6(4), 5471–5503. https://doi.org/10.5194/hessd-6-5471-2009

Zhai, P. & Eskridge, R.E. (1997). Atmospheric Water Vapor over China. Journal of Climate, 10(10), 2643-2652. https://doi. org/10.1175/1520-0442(1997)0102.0.CO;2

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Most read articles by the same author(s)