Permeability coefficient tests in non-cohesive soils

Main Article Content

Grzegorz Wrzesiński


Keywords : permeability coefficient, non-cohesive soil, pumping test, consolidation test, groundwater
Abstract
The paper aims to comparison the permeability coefficient in non-cohesive soils by the method of test pumping and based on tests in a consolidometer. The tests were carried out on 18 types of non-cohesive soils with different fraction. Pumping tests were carried out according to the standard method i.e. by making one well with a diameter of 400 mm and installing two piezometers at different distances from the well. The water table change was measured in piezometers during water pumping from the well. Tests in the consolidometer were carried out on soil samples that were first compacted to the same density index as in the test site. The tests were carried out with a continuous inflow of water from below with constant gradients of 0.50. The tests presented in the paper allow to verify and compare the values of the permeability coefficient in non-cohesive soils determined in the field and laboratory tests.

Article Details

How to Cite
Wrzesiński, G. (2020). Permeability coefficient tests in non-cohesive soils. Scientific Review Engineering and Environmental Sciences (SREES), 29(1), 72–80. https://doi.org/10.22630/PNIKS.2020.29.1.7
References

Dąbrowski, S. & Przybyłek, J. (2005). Metodyka próbnych pompowań w dokumentowaniu zasobów wód podziemnych. Poradnik metodyczny [Methods of test pumping in documenting groundwater resources. A methodological guide]. Poznań: Bogucki Wydawnictwo Naukowe.

Driscoll, F. (1986). Groundwater and Wells. St Paul, MN: Johnson Filtration Systems.

EN ISO 14688-1:2002. Geotechnical Investigation and Testing. Identification and Classification of Soil. Part 1: Identification and Description.

EN ISO 14688-2:2004. Geotechnical Investigation and Testing. Identification and Classification of Soil. Part 2: Principles for a Classification.

Head, K. & Epps, R. (2011). Manual of soil laboratory testing. Vol. 2. Permeability, shear strength and compressibility test. Dunbeath Mill: Whittles Publishing.

Head, K. (1980). Manual of soil laboratory testing. Vol. 1. Soil classification and compaction test. London: Pentech Press.

International Committee of the Red Cross [ICRC] (2011). Technical review. Practical guidelines for test pumping in water wells. Geneva.

Kruseman, G.P. & Ridder, N.A. de (1994). Analysis and Evaluation of Pumping Test Data. Wageningen: International Institute for Land Reclamation and Improvement.

MacDonald, A., Barker, J. & Davies, J. (2008). The bailer test: A simple effective pumping test for assessing borehole success. Hydrogeology Journal, 16(6), 1065-1075.

Matusiewicz, W. & Wrzesiński, G. (2018). Odwodnienie stref bezodpływowych małej zlewni miejskiej [Drainage of the depression area in a small urban catchment]. Acta Scientiarum Polonorum Architectura, 17(3), 131-144. https://doi.org/10.22630/ASPA.2018.17.3.35

Parylak, K., Zięba, Z., Bułdys, A. & Witek, K. (2013). Weryfikacja wyznaczania współczynnika filtracji gruntów niespoistych za pomocą wzorów empirycznych w ujęciu ich mikrostruktury [The verification of determining a permeability coefficient of noncohesive soil based on empirical formulas including its microstructure]. Acta Scientiarum Polonorum Architectura, 12(2), 43-51.

Polak, K., Kaznowska-Opala, K., Pawlecka, K. & Klich, J. (2014). Analiza przebiegu próbnych pompowań na przykładzie studni badawczej AGH-1 [Interpretation of pumping tests results on the basis of examination of AGH-1 well]. Przegląd Górniczy, 10, 106-111.

Rybka, I., Bondar-Nowakowska, E. & Połoński, M. (2016). Causes and effects of adverse events during water supply and sewerage system constructions. Archives of Civil Engineering, 62(1), 173-184.

Szymkiewicz, A. & Kryczałło, A. (2011). Obliczanie współczynnika filtracji piasków i żwirów na podstawie krzywej uziarnienia: przegląd wzorów empirycznych [Calculation of permeability coefficient of sands and gravel based on grain size distribution curve: review of empirical relations]. Inżynieria Morska i Geotechnika, 2, 110-121.

Todd, D. (1980). Groundwater Hydrology. Chichester: John Wiley & Sons.

Twardowski, K. & Drożdżak, R. (2006). Pośrednie metody oceny właściwości fi ltracyjnych gruntów [Indirect methods for assessing soil fi ltration properties]. Wiertnictwo, Nafta, Gaz, 23(1), 477-486.

Tymosiak, D. & Sulewska, M.J. (2016). Badania parametrów zagęszczalności gruntów niespoistych metodą Proctora [The study of compactibility parameters in non-cohesive soils by Proctor compaction test]. Acta Scientiarum Polonorum Architectura, 15(3), 43-54.

Wdowska, M.K. & Lipiński, M.J. (2016). Ocena efektywności wyznaczania współczynnika filtracji metodami pośrednimi w różnych gruntach drobnoziarnistych [Effectivness of indirect approach of determination of coefficient of permeability in fine grained soils]. Acta Scientiarum Polonorum Architectura, 15(4), 79-89.

Wiłun, Z. (2013). Zarys geotechniki. Warszawa: Wydawnictwa Komunikacji i Łączności.

Wrzesiński, G., Kowalski, J. & Miszkowska, A. (2018). Numerical analysis of dewatering process of deep excavation. International Multidisciplinary Scientifi c GeoConference SGEM, 18(1.2), 497-504. https://www.doi.org/10.5593/sgem2018/1.2/S02.063

Statistics

Downloads

Download data is not yet available.
Recommend Articles