Main Article Content
Article Details
Adams, K., Greenbaum, D.S., Shaikh, R., Erp, A.M. van & Russell, A.G. (2015). Particulate matter components, sources, and health: Systematic approaches to testing effects. Journal of the Air & Waste Management Association, 65(5), 544-558. https://doi.org/10.1080/10962247.2014.1001884
Amphanthong, P. & Busababodhin, P. (2015). Forecasting PM10 in the Upper Northern Area of Thailand with Grey System Theory. Burapha Science Journal, 20(1), 15-24.
Benas, N., Beloconi, A. & Chrysoulakis, N. (2013). Estimation of urban PM10 concentration, based on MODIS and MERIS/ /AATSR synergistic observations. Atmospheric Environment, 79, 448-454. https://doi.org/10.1016/j.atmosenv.2013.07.012
Emetere, M.E., Sanni, S.E., Okoro, E.E. & Adeyemi, G.A. (2018). Aerosol loading and its effect on respiratory dysfunction disorder over Dapaong-Togo. Scientific Review Engineering and Environmental Sciences, 27(4), 410-424. https://doi.org/10.22630/PNIKS.2018.27.4.40
GreenFacts (2018). Air pollution particulate matter. Retrieved from: https://www.greenfacts. org/en/particulate-matter-pm/level-2/01presentation.htm [access 15.08.2020].
He, Q. & Huang, B. (2018). Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sensing of Environment, 206, 72-83. https://doi.org/10.1016/j.rse.2017.12.018
Kloog, I., Koutrakis, P., Coull, B.A., Lee, H.J. & Schwartz, J. (2011). Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmospheric Environment, 45(35), 6267-6275. https://doi. org/10.1016/j.atmosenv.2011.08.066
Lalitaporn, P. & Mekaumnuaychai, T. (2020). Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data. Environmental Monitoring and Assessment, 192, 369. https://doi. org/10.1007/s10661-020-08346-7
Liu, Y., Sarnat, J.A., Kilaru, V., Jacob, D.J. & Koutrakis, P. (2005). Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. Environmental Science & Technology, 39(9), 3269-3278. https://doi. org/10.1021/es049352m
Meng, X., Wu, Y., Pan, Z., Wang, H., Yin, G. & Zhao, H. (2019). Seasonal Characteristics and Particle-size Distributions of Particulate Air Pollutants in Urumqi. International Journal of Environmental Research and Public Health, 16(3), 396. https://doi.org/10.3390/ijerph16030396
Nathapindhu, G., Sttheetham, D. & Ketkowit, K. (2011). Public Participation in Open Burning Control. KKU Research Journal, 16(4), 408-415.
Nguyen, H., Cressie, N. & Braverman, A. (2012). Spatial statistical data fusion for remote sensing applications. Journal of the American Statistical Association, 107(499), 1004-1018. https://doi.org/10.1080/01621459.2012.694717
Outapa, P. & Ivanovitch, K. (2019). The effect of seasonal variation and meteorological data on PM10 concentrations in Northern Thailand. International Journal of GEOMATE, 16(56), 46-53. https://doi.org/10.21660/2019.56.4558
Phayungwiwatthanakoon, C., Suwanwaree, P., Dasananda, S. (2014). Application of new MODIS-based Aerosol Index for Air Pollution Severity Assessment and Mapping in Upper Northern Thailand. Environment Asia, 7(2), 133-141. https://doi. org/10.14456/ea.2014.32
Pollution Control Department [PCD] (2004). Air pollution. Retrieved from: http://www. pcd.go.th/info_serv/air_dust.htm [access 04.05.2020].
Porter, J.N. & Clarke, A.D. (1997). Aerosol size distribution models based on in situ measurements. Journal of Geophysical Research Atmospheres, 102(D5), 6035-6045. https://doi. org/10.1029/96JD03403
Rotjanakusol, T. & Laosuwan, T. (2018). Estimation of land surface temperature using Landsat satellite data: a case study of Mueang Maha Sarakham District, Maha Sarakham
Province, Thailand for the years 2006 and 2015. Scientific Review Engineering and Environmental Sciences, 27(4), 401-409. https://doi.org/10.22630/PNIKS.2018.27.4.39
Rotjanakusol, T. & Laosuwan, T. (2019). Drought Evaluation with NDVI-Based Standardized Vegetation Index in Lower Northeastern Region of Thailand. Geographia Technica, 14(1), 118-130. https://doi.org/10.21163/GT_2019.141.09
Sukitpaneenit, M. & Oanh, N.T.K. (2014). Satellite monitoring for carbon monoxide and particulate matter during forest fire episodes in Northern Thailand. Environmental Monitoring and Assessment, 186(4), 2495-2504. https://doi.org/10.1007/s10661-013-3556-x
Suwanprasit, C., Charoenpanyanet, A., Pardthaisong, L. & Sin-ampol, P. (2018). Spatial and temporal variations of satellite-derived PM10 of Chiang Mai: an exploratory analysis. Procedia Engineering, 212, 141-148. https://doi. org/10.1016/j.proeng.2018.01.019
Supasri, T., Intra, P., Jomjunyong, S. & Sampattagul, S. (2018). Evaluation of Particulate Matter Concentration by Using a Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution in Northern of Thailand. Journal of Innovative Technology United States Environmental Protection Agency [USEPA] (2018). Particulate Matter (PM) Pollution. Retrieved from: https://www.epa. gov/pm-pollution/particulate-matter-pm-basics [access 20.01.2020].Research, 2(1), 69-83.
Uttaruk, Y. & Laosuwan, T. (2019). Drought Analysis Using Satellite-Based Data and Spectral Index in Upper Northeastern Thailand. Polish Journal of Environmental Studies, 28(6), 4447-4454. https://doi.org/10.15244/pjoes/94998
Vienneau, D., Hoogh, K. de, Bechle, M.J., Beelen, R., Donkelaar, A. van, Martin, R.V., Millet, D.B., Hoek, G. & Marshall, J.D. (2013). Western European land use regression incorporating satellite- and ground-based measurements of NO2 and PM10. Environmental Science & Technology, 47(23), 13555-13564. https://doi.org/10.1021/es403089q
World Health Organization [WHO] (2017). Air pollution. Retrieved from: https://www.who. int/docs/default-source/thailand/air-pollution/briefing-on-air-pollution-th-thai.pdf? sfvrsn=408572d4_2 [access 02.10.2020].
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.