Verification of strength resistance of sandy soil using small scale penetrometer tests

Main Article Content

Hiba D. Saleem
Asad H. Aldefae
Wissam H. Humaish

Keywords : cone penetration, tip resistance, sleeve resistance, relative density, angle of internal friction
This study focuses on utilizing cone penetrometer models to determine strength (resistance) of sandy soil and also assessment how the relative density and the angle of friction effects on the measured cone penetration resistance in sandy soil. Simple empirical equations are used also to determine the cone penetration resistance components such as the sleeve resistance and the tip resistance. Simple comparison is performed between the measured and calculated soil strength and well agreement is noticed between them.

Article Details

How to Cite
Saleem, H. D., Aldefae, A. H., & Humaish, W. H. (2021). Verification of strength resistance of sandy soil using small scale penetrometer tests. Scientific Review Engineering and Environmental Sciences (SREES), 30(2), 304–314.

Ahmadi, M.M., Byrne, P.M. & Campanella, R.G. (2005). Cone tip resistance in sand: modeling, verification, and applications. Canadian Geotechnical Journal, 42(4), 977-993. (Crossref)

Al-Aayedi, H.K., Aldefae, A.H. & Shamkhi, M.S. (2020). Seismic performance of bridge piers. IOP Conference Series: Materials Science and Engineering, 870(1), 012069. (Crossref)

Aldefae, A.H. & Saleem, H.D. (2020). Design, manufacturing and testing of biaxial mechanical travelling pluviator. IOP Conference Series: Materials Science and Engineering, 870(1), 012071. (Crossref)

Aldefae, A.H., Shamkhi, M.S. & Khalaf, T. (2019). Design and manufacturing of geotechnical laboratory tools used in physical modeling. Cogent Engineering, 6(1), 1637622. (Crossref)

American Society for Testing and Materials [ASTM] (2012). Standard test method for electronic friction cone and piezocone penetration testing of soils (ASTM D3441-98). West Conshohocken (PA): American Society for Testing and Materials.

Anagnostopoulos, A., Koukis, G., Sabatakakis, N. & Tsiambaos, G. (2003). Empirical correlations of soil parameters based on cone penetration tests (CPT) for Greek soils. Geotechnical & Geological Engineering, 21(4), 377-387. (Crossref)

Campanella, R.G., Robertson, P.K. & Gillespie, D. (1983). Cone penetration testing in deltaic soils. Canadian Geotechnical Journal, 20(1), 23-35. (Crossref)

Carey, T., Gavras, A., Kutter, B., Haigh, S.K., Madabhushi, G.S.P., Okamura, M., Kim, D.S., Ueda, K., Hung, W-Y., Zhou Y-G., Liu, K., Chen, Y.M., Zeghal, M., Abdoun, T., Escoffier, S. & Manzari, M. (2018). A new shared miniature cone penetrometer for centrifuge testing. In Physical Modelling in Geotechnics. Vol. 1 (pp. 293-298). London: CRC Press. (Crossref)

Carey, T., Gavras, A. & Kutter, B. (2020). Comparison of LEAP-UCD-2017 CPT Results. In Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading (pp. 117-129). Cham: Springer. (Crossref)

Darby, K.M., Bronner, J.D., Parra Bastidas, A.M., Boulanger, R.W. & DeJong, J.T. (2016). Effect of shaking history on the cone penetration resistance and cyclic strength of saturated sand. In Geotechnical and Structural Engineering Congress 2016 (pp. 1460-1471). Reston (VA): American Society of Civil Engineers. (Crossref)

Dave, T.N. & Dasaka, S.M. (2012). Assessment of portable traveling pluviator to prepare reconstituted sand specimens. Geomechanics and Engineering, 4(2), 79-90. (Crossref)

Dayal, U. & Allen, J.H. (1975). The effect of penetration rate on the strength of remolded clay and sand samples. Canadian Geotechnical Journal, 12(3), 336-348. (Crossref)

Gade, V.K. & Dasaka, S.M. (2016). Development of a mechanized traveling pluviator to prepare reconstituted uniform sand specimens. Journal of Materials in Civil Engineering, 28(2), 04015117. (Crossref)

Gade, V.K. & Dasaka, S.M. (2017). Assessment of air pluviation using stationary and movable pluviators. Journal of Materials in Civil Engineering, 29(5), 06016023. (Crossref)

Jamiolkowski, M., Lo Presti, D.C.F. & Manassero, M. (2003). Evaluation of relative density and shear strength of sands from CPT and DMT. In Soil behavior and soft ground construction (pp. 201-238). Reston (VA): American Society of Civil Engineers. (Crossref)

Juang, C.H., Huang, X.H., Holtz, R.D. & Chen, J.W. (1996). Determining relative density of sands from CPT using fuzzy sets. Journal of Geotechnical Engineering, 122(1), 1-6. (Crossref)

Kim, J.H., Kim, S.R., Lee, H.Y., Choo, Y.W., Kim, D.S. & Kim, D.J. (2014). Miniature cone tip resistance on silty sand in centrifuge model tests. In Ch. Gaudin, D. White (eds.), Proceedings of the 8th International Conference on Physical Modelling in Geotechnics 2014 (pp. 1301-1306). London: CRC Press. (Crossref)

Kulhawy, F.H. & Mayne, P.W. (1990). Manual on estimating soil properties for foundation design. Palo Alto (CA): Electric Power Research Institute.

Kutter, B., Carey, T., Stone, N., Zheng, B.L., Gavras, A., Manzari, M.T., Zeghal, M., Abdoun, T., Korre, E.,Escoffier, S., Haigh, S.K., Madabhushi, G.S.P., Madabhushi, S.S.C., Hung, W-Y., Liao, T-W., Kim, D-S, Kim, S-N., Ha, J-G., Kim, N.R., Okamura, M., Sjafruddin, A.N., Tobita, T., Ueda, K., Vargas, R., Zhou, Y-G. & Liu, K. (2020). LEAP-UCD-2017 comparison of centrifuge test results. In B. Kutter, M. Manzari, M. Zeghal (eds.), Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading (pp. 69-103). Cham: Springer. (Crossref)

Lee, J., Salgado, R. & Carraro, J.A.H. (2004). Stiffness degradation and shear strength of silty sands. Canadian Geotechnical Journal, 41(5), 831-843. (Crossref)

Lunne, T., Powell, J.J. & Robertson, P.K. (2002). Cone penetration testing in geotechnical practice. Boca Raton (FL): CRC Press. (Crossref)

Presti, D.L., Pedroni, S. & Crippa, V. (1992). Maximum dry density of cohesionless soils by pluviation and by ASTM D 4253-83: a comparative study. Geotechnical Testing Journal, 15(2), 180-189. (Crossref)

Puebla, H., Byrne, P.M. & Phillips, R. (1997). Analysis of CANLEX liquefaction embankments: prototype and centrifuge models. Canadian Geotechnical Journal, 34(5), 641-657. (Crossref)

Ricceri, G., Simonini, P. & Cola, S. (2002). Applicability of piezocone and dilatometer to characterize the soils of the Venice Lagoon. Geotechnical & Geological Engineering, 20(2), 89-121. (Crossref)

Salgado, R., Jamiolkowski, M. & Mitchell, J.K. (1998). Penetration resistance in sand: analysis and applications to liquefaction potential assessment and estimation of pile base resistance. Rivista Italiana di Geotecnica, 32(4), 5-17.

Schneider, J.A., Randolph, M.F., Mayne, P.W. & Ramsey, N.R. (2008). Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters. Journal of Geotechnical and Geoenvironmental Engineering, 134(11), 1569-1586. (Crossref)

Sivrikaya, O.S.M.A.N. & Tođrol, E. (2006). Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey. Engineering Geology, 86(1), 52-69. (Crossref)

Zervogiannis, H., Bouckovalas, G. & Christoulas, S. (1987). Correlation of mechanical characteristics and classification of soil deposits. Bulletin of Central Public Works Laboratory, 4, 255-265.

Zhou, Y.G., Liang, T., Chen, Y.M., Ling, D.S., Kong, L.G., Shamoto, Y. & Ishikawa, A. (2019). A two-dimensional miniature cone penetration test system for centrifuge modelling. In Ch. Gaudin, D. White (eds.), Physical Modelling in Geotechnics (pp. 301-307). London: Taylor & Francis Group. (Crossref)

Zhuang, P.Z. & Yu, H.S. (2018). Size effects in cone penetration tests in sand. In W. Wu, H.S. Yu (eds.), Proceedings of China-Europe Conference on Geotechnical Engineering (pp. 283-287). Cham: Springer. (Crossref)



Download data is not yet available.
Recommend Articles