Main Article Content
A field experiment was performed to assess the impact of potassium co-amended with boron at different application rates on organic matter, nitrogen, phosphorus, potassium and boron in the soil, also in terms of plant height, spike length, pedicel length, leaf area, spike weight, grain weight, biological yield, fresh biomass and dry biomass of wheat under the dry climate of Uthal. Randomized complete block design (RCBD) was used with the combined application of both K and B fertilizers with a replicate of three times, treatments were T0 control, T1 70 K kg×ha–1 and 0.6 B kg×ha–1, T2 140 K and 1.2 B kg×ha–1, T3 210 K and 1.8 B kg×ha–1 of potassium and boron respectively. Furthermore, boron was applied in three split doses (time of sowing, maturity of plant, and booting stage); whereas potassium was used in two split doses (before sowing and maturity). The obtained results demonstrated that plant height was increased, ranging from 77.68 to 83.00 cm, with T3, biological yield 14,150.0–19,186.67 kg×ha–1 with T3, in-soil N 0.04–0.069% with T3, in-soil P 3.42–3.89 mg×kg–1 with T3, in-soil K 82.00–120.00 mg×kg–1 with T3, in-soil B 0.11–0.22 mg×kg–1 with T3 than control treatment. The uptake NPK, and B by the wheat plant was increased, ranging from 1.17–1.66% with T3, 0.33–0.54 mg×kg–1 with T3, 2.32–2.72 mg×kg–1 with T3, and 1.12–1.14 mg×kg–1 with T3 as compared with the control treatment. The plant fresh and dry biomasses and soil organic matter were increased at T3 over that of the control soil. Overall, the findings of this study indicated that the co-application of potassium and boron at 210 and 1.8 kg×ha–1 doses can be successfully used to enhance grain and yield parameters of wheat, particularly those cultivated in dry climatic conditions.
Article Details
Abbas, M., Abdel-Lattif, H., & Shahba, M. (2021). Ameliorative effects of calcium sprays on yield and grain nutritional composition of maize (Zea mays L.) cultivars under drought stress. Agriculture, 11 (4), 285. https://doi.org/10.3390/agriculture11040285 (Crossref)
Abou Seeda, M. A., Abou El-Nour, E. A. A., Yassen, A. A., & Hammad, S. A. (2021). Boron, structure, functions, and its interaction with nutrients in plant physiology. A review. Middle East Journal of Agriculture Research, 10 (01), 117–179.
Akhtar, N., Ilyas, N., Arshad, M., Meraj, T. A., Hefft, D. I., Jan B. L., & Ahmad, P. (2022). The impact of calcium, potassium, and boron application on the growth and yield characteristics of durum wheat under drought conditions. Agronomy, 12 (8), 1917. https://doi.org/10.3390/agronomy12081917 (Crossref)
Al-Ameri, B. H., Al-Saedi, S. A., & Razaq, I. B. (2019). Effect of Boron supplement on yield of wheat grown in calcareous soils of different textural classes under arid conditions. Journal of Agricultural Science (Toronto), 11 (1), 112–117. https://doi.org/10.5539/jas.v11n1p112 (Crossref)
Ali, A., Tariq, M., Rashid, M., Kalhoro, S. A., Maqbool, M., Ahmed, M., Narejo, M. N., & Marri, F. A. (2019). Fortified fertilizer application in wheat (Triticum aestivum L.) grown under water stress condition. Pure and Applied Biology (PAB), 8 (1), 960–967. http://dx.doi.org/10.19045/bspab.2019.80037 (Crossref)
Ali, S., Shah, S., & Arif, M. (2021). Agronomic biofortification with zinc and iron for the improvement of wheat phenology and yield. Sarhad Journal of Agriculture, 37 (3), 901–914. https://dx.doi.org/10.17582/journal.sja/2021/37.3.901.914 (Crossref)
Al-Taher, F.M., & Al-Naser, H.H. (2021). The effect of different levels of potassium on the productivity of genotypes of wheat Triticum aestivum L. IOP Conference Series: Earth and Environmental Science, 923 (1), 012061. https://doi.org/10.1088/1755-1315/923/1/012061 (Crossref)
Ameer, I., Kubar, K.A., Ali, Q., Ali, S., Khan, T., Shahzad, K., Riaz, M., Shah, Z. U. H., Rajpar, I., Ahmed, M., & Talpur, K. H. (2023). Land degradation resistance potential of a dry, semiarid region in relation to soil organic carbon stocks, carbon management index, and soil aggregate stability. Land Degradation & Development, 34 (3), 624–636. https://doi.org/10.1002/ldr.4480 (Crossref)
Azeem, M., Shoujun, Y., Qasim, M., Abbasi, M. W., Ahmed, N., Hanif, T., Adnan, M. Y., Ahmad, R., & Dong, R. (2021). Foliar enrichment of potassium and boron overcomes salinity barriers to improve growth and yield potential of cotton (Gossypium hirsutum L.). Journal of Plant Nutrition, 44 (3), 438–454. https://doi.org/10.1080/01904167.2020.1845365 (Crossref)
Brhane, H., Mamo, T., & Teka, K. (2017). Potassium fertilization and its level on wheat (Triticum aestivum) yield in shallow depth soils of Northern Ethiopia. Journal of Fertilizers and Pesticides, 8 (02), 8–10. https://doi.org/10.4172/2471-2728.1000182 (Crossref)
Cui, M. H., Chen, X. Y., Yin, F. X., Xia, G. M., Yi, Y., Zhang, Y. B., Liu, S. W., & Li, F. (2022). Hybridization affects the structure and function of root microbiome by altering gene expression in roots of wheat introgression line under saline-alkali stress. Science of The Total Environment, 835, 155467. https://doi.org/10.1016/j.scitotenv.2022.155467 (Crossref)
Debnath, P., & Ghosh, S. K. (2011). Determination of critical limit of available boron for rice in terai zone soils of West Bengal. Journal of the Indian Society of Soil Science, 59 (1), 82–86.
Ewais, M. A., Abd El-Rahman, L. A., & Sayed, D. A. (2020). Effect of foliar application of boron and potassium sources on yield and quality of potato (Solanum tuberosum L.). Middle East Journal of Applied Sciences, 10 (1), 120–137. https://doi.org/10.36632/mejas/2020.10.1.15 (Crossref)
Ferdoush, J. N., & Rahman, M. M. (2013). Effects of boron fertilization and sowing date on the grain protein content of wheat varieties. Journal of Environmental Science and Natural Resources, 6 (1), 41–45. (Crossref)
Gomes, M. I. (1984). Penultimate limiting forms in extreme value theory. Annals of the Institute of Statistical Mathematics, 36 (1), 71–85. (Crossref)
Günes, A., & Alpaslan, M. (2000). Boron uptake and toxicity in maize genotypes in relation to boron and phosphorus supply. Journal of Plant Nutrition, 23 (4), 541–550. https://doi.org/10.1080/01904160009382038 (Crossref)
Hasanuzzaman, M., Bhuyan, M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8 (3), 31. https://doi.org/10.3390/agronomy8030031 (Crossref)
Hossain, A., Silva J. A. T. da, & Bodruzzaman, M. (2015). Rate and application methods of potassium in light soil for irrigated spring wheat. Songklanakarin Journal of Science & Technology, 37 (6), 635–642.
Hussan, M. U., Saleem, M. F., Hafeez, M. B., Khan, S., Hussain S., Ahmad, N., Ramzan, Y., & Nadeem, M. (2022). Impact of soil-applied humic acid, zinc and boron supplementation on the growth, yield and zinc translocation in wheat. Asian Journal of Agriculture and Biology, 1, 1–8. https://doi.org/10.35495/ajab.2021.02
Jackson, M. L. (2005). Soil chemical analysis. Advanced course: a manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis. UW-Madison Libraries Parallel Press.
Kalhoro, S. A., Ding, K., Zhang, B., Chen, W., Hua, R., Shar, A. H., & Xu, X. (2019). Soil infiltration rate of forestland and grassland over different vegetation restoration periods at Loess Plateau in northern hilly areas of China. Landscape and Ecological Engineering, 15, 91–99. https://doi.org/10.1007/s11355-018-0363-0 (Crossref)
Kalhoro, S. A., Xu, X., Chen, W., Hua, R., Raza, S., & Ding, K. (2017). Effects of different land-use systems on soil aggregates: a case study of the Loess Plateau (Northern China). Sustainability, 9 (8), 1349. https://doi.org/10.3390/su9081349 (Crossref)
Kalhoro, S. A., Xu, X., Ding, K., Chen, W., Shar, A. G., & Rashid, M. (2018). The effects of different land uses on soil hydraulic properties in the Loess Plateau, Northern China. Land Degradation & Development, 29 (11), 3907–3916. https://doi.org/10.1002/ldr.3138 (Crossref)
Khan, A., & Aziz, M. (2013). Influence of foliar application of potassium on wheat (Triticum aestivum L.) under saline conditions. Science Technology Division, 32 (4), 285–289.
Lima Filho, O. F. de, & Malavolta, E. (1998). Evaluation of extraction procedures on determination of critical soil and foliar level of boron and zinc in coffee plants. Communications in Soil Science and Plant Analysis, 29 (7–8), 825–833. https://doi.org/10.1080/00103629809369988 (Crossref)
Liza, M. M., Barman, A., Shome, S., & Rahman, M. E. (2021). Influence of coupled application of potassium and boron on growth and yield of late sown mungbean. World Journal of Advanced Research and Reviews, 11 (1), 256–264. (Crossref)
Long, Y., & Peng, J. (2023). Interaction between boron and other elements in plants. Genes, 14 (1), 130. https://doi.org/10.3390/genes14010130 (Crossref)
Madghash, M. R., & Ali, O. N. (2023). Effect of potassium humate and spraying with boron on the yield and its components of sesame crop. IOP Conference Series: Earth and Environmental Science, 1225 (1), 012067. https://doi.org/10.1088/1755-1315/1225/1/012067 (Crossref)
Meena, N., Sanathkumar, M., Nain, A., & Jat, S. (2024). Effect of potassium and boron on yield and economics of mustard (Brassica juncea L.). International Journal of Advanced Biochemistry Research, 8 (7), 1096–1099. https://doi.org/10.33545/26174693.2024.v8.i7n.1671 (Crossref)
Moghaddam, M. S. H., Safaie, N., Soltani, J., & Hagh-Doust, N. (2021). Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiology and Biochemistry, 160, 225–238. https://doi.org/10.1016/j.plaphy.2021.01.022 (Crossref)
Mustafa, H., Ilyas, N., Akhtar, N., Raja, N. I., Zainab, T., Shah T., Ahmad, A., & Ahmad, P. (2021). Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicology and Environmental Safety, 223, 112519. https://doi.org/10.1016/j.ecoenv.2021.112519 (Crossref)
Narimani, H., Rahimi, M. M., Ahmadikhah A., & Vaezi, B. (2010). Study on the effects of foliar spray of micronutrient on yield and yield components of durum wheat. Archives of Applied Science, 2 (6), 168–176.
Pamungkas, S. S. T., Suwarto, Suprayogi, & Farid, N. (2022). Drought stress: responses and mechanism in plants. Reviews in Agricultural Science, 10, 168–185. https://doi.org/10.7831/ras.10.0_168 (Crossref)
Panhwar, N. A., Ahmed, S. R., Lahori, A. H., Mierzwa-Hersztek, M., Afzal, A., Vambol, V., Memon, A. H., Panhwar, S. A., Tunio, M., Buriro, S. A., & Vambol, S. (2024). Statistical analysis of association, heterosis, and inheritance of grain yield contributing quantitative traits in segregating lines of wheat (Triticum aestivum L.). Journal of Environmental Accounting and Management, 12 (01), 13–26. https://doi.org/10.5890/JEAM.2024.03.002 (Crossref)
Rady, M. M., & Mohamed, G. F. (2018). Improving salt tolerance in Triticum aestivum (L.) plants irrigated with saline water by exogenously applied proline or potassium. Advances in Plants Agriculture Research, 8 (2), 193–199. https://doi.org/10.15406/apar.2018.08.00312 (Crossref)
Rasool, R., Kukal, S. S., & Hira, G. S. (2008). Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize-wheat system. Soil and Tillage Research, 101, 31–36. https://doi.org/10.1016/j.still.2008.05.015 (Crossref)
Rawat, J., Pandey, N., & Saxena, J. (2022). Role of potassium in plant photosynthesis, transport, growth and yield. In N. Iqbal & S. Umar (Eds.), Role of potassium in abiotic stress (pp. 1–14). Springer. https://doi.org/10.1007/978-981-16-4461-0_1 (Crossref)
Rehman, A. U., Farooq, M., Rashid, A., Nadeem, F., Stuerz, S., Asch, F., Bell, R. W., & Siddique, K. H. M. (2018). Boron nutrition of rice in different production systems. A review. Agronomy for Sustainable Development, 38 (3), 1–14. https://doi.org/10.1007/s13593-018-0504-8 (Crossref)
Robertson, L. S., Lucas, R. E., & Christenson, D. R. (1981). Boron: an essential plant micronutrient. Cooperative Extension Bulletin.
Santos, E. F., Mateus, N. S., Rosário, M. O., Garcez, T. B., Mazzafera P., & Lavres, J. (2021). Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. Physiologia Plantarum, 172 (2), 552–563. https://doi.org/10.1111/ppl.13228 (Crossref)
Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro-micro nutrients in alkaline soils. Communications in Soil Science and Plant Analysis, 8 (3), 195–207. https://doi.org/10.1080/00103627709366714 (Crossref)
Tariq, M., & Mott, C. J. B. (2007). Effect of boron on the behavior of nutrients in soil-plant systems-a review. Asian Journal of Plant Sciences, 6 (1) 195–202. (Crossref)
Vera-Maldonado, P., Aquea, F., Reyes-Díaz, M., Cárcamo-Fincheira, P., Soto-Cerda, B., Nunes-Nesi, A., & Inostroza-Blancheteau, C. (2024). Role of boron and its interaction with other elements in plants. Frontiers in Plant Science, 15, 1332459. https://doi.org/10.3389/fpls.2024.1332459 (Crossref)
Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37 (1), 29–38. (Crossref)
Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14 (4), 7370–7390. https://doi.org/10.3390/ijms14047370 (Crossref)
Wasaya, A., Abbas, T., Yasir, T. A., Sarwar, N., Aziz, A., Javaid, M. M., & Akram, S. (2021). Mitigating drought stress in sunflower (Helianthus annuus L.) through exogenous application of β-aminobutyric acid. Journal of Soil Science and Plant Nutrition, 21, 936–948. https://doi.org/10.1007/s42729-021-00412-4 (Crossref)
Zhao, Z., Wang, S., White, P. J., Wang, Y., Shi, L., & Xu, F. (2020). Boron and phosphorus act synergistically to modulate absorption and distribution of phosphorus and growth of Brassica napus. Journal of Agricultural and Food Chemistry, 68 (30), 7830–7838. https://doi.org/10.1021/acs.jafc.0c02522 (Crossref)
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.