Main Article Content
The seismic stability of concrete arch dams has always been a key parameter in seismic safety evaluation. For this purpose, this paper presents a numerical analysis of the seismic response of an arch of the Tichy-Haf Dam using the Midas GTS NX software. The study employs the finite element method and a nonlinear time history analysis to evaluate the stability of the structure. Several reference nodes on the dam body were selected to assess displacement, velocity, and acceleration during seismic events. To determine the values of these parameters, nonlinear time-history analyses were conducted using four accelerograms with amplitudes of 0.25 g, 0.32 g, 0.36 g, and 0.44 g, respectively. The dynamic numerical analysis revealed that the dam performed well during the seismic events, maintaining its structural integrity. The numerical model was validated by comparing the results from the static analysis with the actual monitoring data from the dam. This comparison demonstrated the effectiveness of the numerical simulation method in analyzing the stability of the arch dam.
Article Details
Adjadj, M., Aliouche, Y., & Meksaouine, M. (2021). Three-dimensional non-linear analysis based on the temporal evolution of an RCC dam including the alluvium effect. GeoScience Engineering, 67(1), 11–20. https://doi.org/10.35180/gse-2021-0047 (Crossref)
Autodesk (2008). Land Surveyor 2.1.
Autodesk (2024). AutoCAD.
Bayraktar, A., Sevim, B., & Can Altunişik, A. (2011). Finite element model updating effects on nonlinear seismic response of arch dam reservoir foundation systems. Finite Elements in Analysis and Design, 47(2), 85–97. https://doi.org/10.1016/j.finel.2010.09.005 (Crossref)
Chopra, A. K. (2012). Earthquake analysis of arch dams: Factors to be considered. Journal of Structural Engineering, 138(2), 205–214. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000431 (Crossref)
Das, S. K., Mandal, K. K., & Niyogi, A. G. (2023). Finite element-based direct coupling approach for dynamic analysis of dam–reservoir system. Innovative Infrastructure Solutions, 8(44), 1–15. https://doi.org/10.1007/s41062-022-01013-5 (Crossref)
Ebrahimian, B. (2011). Numerical analysis of nonlinear dynamic behavior of earth dams. Frontiers of Architecture and Civil Engineering in China, 5(1), 24–40. https://doi.org/10.1007/s11709-010-0082-6 (Crossref)
Enzell, J., Ulfberg, A., Sas, G., & Malm, R. (2021). Post-peak behavior of concrete dams based on nonlinear finite element analyses. Engineering Failure Analysis, 130, 105778. https://doi.org/10.1016/j.engfailanal.2021.105778 (Crossref)
Haghani, M., Neya, B. N., Ahmadi, M. T., & Amiri, J. V. (2022). A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method. Engineering Failure Analysis, 132, 105835. https://doi.org/10.1016/j.engfailanal.2021.105835 (Crossref)
He, Q., Gu, C., Valente, S., Zhao, E., Liu, X., & Yuan, D. (2022). Multi-arch dam safety evaluation based on statistical analysis and numerical simulation. Scientific Reports, 12(1), 1–19. https://doi.org/10.1038/s41598-022-13073-9 (Crossref)
Liang, C., Chen, J., Xu, Q., & Li, J. (2023). Evaluation of nonlinear response biases of arch dams due to amplitude scaling via three-component record selection based on conditional spectra. Engineering Structures, 287, 116169. https://doi.org/10.1016/j.engstruct.2023.116169 (Crossref)
Li, Z. Y., Hu, Z. Q., Lin, G., & Li, J. B. (2022). A scaled boundary finite element method procedure for arch dam-water-foundation rock interaction in complex layered half-space. Computers and Geotechnics, 141, 104524. https://doi.org/10.1016/j.compgeo.2021.104524 (Crossref)
Li, Y., Zhao, E., Zhang, J., Shao, C., & Li, Z. (2024). Hybrid reliability evaluation of arch dam during long-term service with multi-dimensional parallelepiped convex model. Engineering Failure Analysis, 157, 107937. https://doi.org/10.1016/j.engfailanal.2023.107937 (Crossref)
Lyu, W., Zhang, L., Yang, B., & Chen, Y. (2021). Analysis of stability of the Baihetan arch dam based on the comprehensive method. Bulletin of Engineering Geology and the Environment, 80, 1219–1232. https://doi.org/10.1007/s10064-020-02009-0 (Crossref)
Majidi, N., Riahi, H. T., Zandi, S. M., & Hajirasouliha, I. (2023). Development of practical downsampling methods for nonlinear time history analysis of complex structures. Soil Dynamics and Earthquake Engineering, 175, 108247. https://doi.org/10.1016/j.soildyn.2023.108247 (Crossref)
Midas (2025). Midas GTS-NX. Midas.
Ningthoukhongjam, S. S., & Singh, K. D. (2021). Analysis of mid-rise moment resisting steel frames by Nonlinear Time History Analysis using Force Analogy Method. Journal of The Institution of Engineers (India): Series A, 102, 901–918. https://doi.org/10.1007/s40030-021-00577-2 (Crossref)
Roësset, J. M. (2007). Review of dynamics of structures: theory and applications to earthquake engineering, Third Edition, by Anil K. Chopra. Journal of Structural Engineering, 133(5), 752–752. https://doi.org/10.1061/(asce)0733-9445(2007)133:5(752) (Crossref)
Sarkar, A., Ghodke, S., & Bagchi, A. (2024). Performance of 2D-spectral finite element method in dynamic analysis of concrete gravity dams. Structures, 59, 105770. https://doi.org/10.1016/j.istruc.2023.105770 (Crossref)
Saxena, S., & Patel, M. (2023). Evaluating dynamic behaviour of a concrete dam using modal analysis. Materials Today: Proceedings, 93(P3), 296–301. https://doi.org/10.1016/j.matpr.2023.07.259 (Crossref)
Sharma, A., & Nallasivam, K. (2023). Static analysis of a concrete gravity dam using the finite element technique. Asian Journal of Civil Engineering, 24, 2939–2957. https://doi.org/10.1007/s42107-023-00686-2 (Crossref)
Shen, Y. (2022). Stability analysis of high slope based on MIDAS GTS digital simulation. In 2022 World Automation Congress Proceedings (pp. 575–580). IEEE. https://doi.org/10.23919/WAC55640.2022.9934489 (Crossref)
Suryadi, A., Wijaya, H., & Yuwono, A. (2023). Nonlinear Time History Pada Fondasi Tiang Pancang Dengan Program Midas Gts Nx. JMTS: Jurnal Mitra Teknik Sipil, 6(2), 383–392. https://doi.org/10.24912/jmts.v6i2.21674 (Crossref)
System (1989). New eXperience of analysis. System.
Varghese, B., Saju, A., & John, S. (2014). Finite element analysis of arch dam. International Journal of Research in Engineering and Technology, 03(07), 180–193. https://doi.org/10.15623/ijret.2014.0307032 (Crossref)
Yu, X., Zhou, Y. F., & Peng, S. Z. (2005). Stability analyses of dam abutments by 3D elasto-plastic finite-element method: A case study of Houhe gravity-arch dam in China. International Journal of Rock Mechanics and Mining Sciences, 42(3), 415–430. https://doi.org/10.1016/j.ijrmms.2005.01.001 (Crossref)
Zewdu, A. (2020). Modeling the slope of embankment dam during static and dynamic stability analysis: a case study of Koga dam, Ethiopia. Modeling Earth Systems and Environment, 6, 1963–1979. https://doi.org/10.1007/s40808-020-00832-8 (Crossref)
Zhang, M. Z., Wang, X. C., Liu, Y. L., Wang, J. T., Yi, K., Yan, J. H., & Chen, H. J. (2024). Effect of attached outlets on the dynamic response of arch dams. Engineering Structures, 302, 117392. https://doi.org/10.1016/j.engstruct.2023.117392 (Crossref)
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.