Main Article Content
Article Details
Abdulraheem, M.S. (2018). Experimental investigation of fire effects on ductility and stiffness of reinforced reactive powder concrete columns under axial compression. Journal of Building Engineering, 20, 750-761.
Abdulraheem, M.S. & Kadhum, M.M. (2018). Experimental and numerical study on post- -fire behaviour of concentrically loaded reinforced reactive powder concrete columns. Construction and Building Materials, 168, 877-892.
ASTM International (2005). Standard specification for silica fume used in cementitious mixtures (ASTM C1240-05). West Conshohocken, PA: ASTM International.
Central Organization for Standardization and Quality Control [CCSQC] (1984). Aggregate from natural sources for concrete and construction (IQS 45/1984). Baghdad: Central Organization for Standardization and Quality Control.
Gkantou, M., Muradov, M., Kamaris, G.S., Atherton, W. & Kot, P. (2019). Novel electromagnetic sensors embedded in reinforced concrete beams for crack detection. Sensors, 19(23), 5175-5189.
Hager, I., Zdeb, T. & Krzemień, K. (2013). The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of Reactive Powder Concretes. MATEC Web of Conferences, 6(1), 02003-02016.
Kadhum, M. (2015). Prediction of Mechanical Properties of Reactive Powder Concrete by Using Artificial Neural Network and Regression Technique after the Exposure to Fire Flame. Jordan Journal of Civil Engineering, 9(3), 1-15.
Kadhum, M.M., Alwash, N.A., Tuama, W.K. & Abdulraheem, M.S. (2020). Experimental and numerical study of influence of crude oil products on the behavior of reactive powder and normal strength concrete slabs. Journal of King Saud University - Engineering Sciences, 32(5), 293-302.
Kadhum, M.M. & Mohammed, Z.A. (2017). Predict the Ultimate Moment Capacity of Reactive Powder Concrete Beams Exposed to Fire Flame Using Artificial Neural Network and Multiple Linear Regression Models. International Journal of Engineering and Technology (IJET), 9(3), 2637-2649.
Khoury, A. & Anderberg, Y. (2000). Fire Safety Design - Concrete Spalling Review. Swedish Borlänge: National Road Administration.
Klingsch, E.W. (2014). Explosive spalling of concrete in fire. IBK Bericht, 356(1), 1-13.
Kodur, V. & Raut, N. (2012). A simplified approach for predicting fire resistance of reinforced concrete columns under biaxial bending. Engineering Structures, 41, 428-443.
Liu, C-T. & Huang, J-S. (2009). Fire performance of highly flowable reactive powder concrete. Construction and Building Materials, 23(5), 2072-2079.
Ryecroft, S., Shaw, A., Fergus, P., Kot, P., Hashim, K., Moody, A. & Conway, L. (2019a). A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. Sensors, 19(8), 1813-1823.
Ryecroft, S., Shaw, A., Fergus, P., Kot, P., Hashim, K. & Conway, L. (2019b). A Novel Gesomin Detection Method Based on Microwave Spectroscopy. In D. Al-Jumeily et al. (eds.), 12th International Conference on Developments in eSystems Engineering (DeSE 2019) (pp. 429-433). IEEE Computer Society Conference Publishing Services. https://doi.org/10.1109/DeSE.2019.00085
Tai, Y-S., Pan, H-H. & Kung, Y-N. (2011). Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800°C. Nuclear Engineering and Design, 241(7), 2416-2424.
Teng, K.H., Kot, P., Muradov, M., Shaw, A., Hashim, K., Gkantou, M. & Al-Shamma’a, A. (2019). Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete. Sensors, 19(3), 547-559.
Tuama, W., Kadhum, M., Alwash, N., Al-Khafaji, Z. & Abdulraheem, M. (2020). RPC Effect of Crude Oil Products on the Mechanical Characteristics of Reactive-Powder and Normal- -Strength Concrete. Periodica Polytechnica Civil Engineering, 64(2), 422-429.
Yan, G. (2009). Application of reactive powder concrete in highway barriers. In Q. Peng et al. (eds.), International Conference on Transportation Engineering 2009 (pp. 7–12). American Society of Civil Engineers. https://doi.org/10.1061/9780784410394
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.