Main Article Content
Article Details
Al-Jelawy, H. (2017). Shifted plastic hinge column connections using grouted sleeves for accelerated bridge construction (doctoral dissertation). University of Central Florida, Orlando (FL).
Al-Jelawy, H.M., Mackie, K.R. & Haber, Z.B. (2018). Shifted plastic hinging for grouted sleeve column connections. ACI Structural Journal, 115(4), 1101-1114. (Crossref)
Amirkhanian, A.N., Spring, D.W., Roesler, J.R. & Paulino, G.H. (2016). Forward and inverse analysis of concrete fracture using the diskshaped compact tension test. Journal of Testing and Evaluation, 44(1), 625-634. (Crossref)
ASTM International [ASTM] (2013). Standard method for determining fracture energy of asphalt-aggregate mixtures using the disk- -shaped compact tension geometry (ASTM D7313-13). West Conshohocken (PA): ASTM International.
Chen, H., Xu, B., Mo, Y.L. & Zhou, T. (2018). Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Construction and Building Materials, 178, 418-431. (Crossref)
Chen, H., Xu, B., Wang, J., Zhou, T., Nie, X. & Mo, Y.L. (2020). Parametric analysis on compressive strain rate effect of concrete using mesoscale modeling approach. Construction and Building Materials, 246, 118375. https://doi.org/10.1016/j.conbuildmat.2020.118375 (Crossref)
Engwirda, D. (2005). Unstructured mesh methods for the Navier-Stokes equations (undergraduate thesis). The University of Sydney, Sydney.
Engwirda, D. (2014). Locally optimal Delaunayrefinement and optimisation-based mesh generation (doctoral dissertation). The University of Sydney, Sydney.
Grassl, P. & Bažant, Z.P. (2009). Random lattice-particle simulation of statistical size effect in quasi-brittle structures failing at crack initiation. Journal of Engineering Mechanics, 135(2), 85-92. (Crossref)
Haber, Z.B., Mackie, K.R. & Al-Jelawy, H.M. (2017). Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging. Journal of Bridge Engineering, 22(10), 04017078. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001105 (Crossref)
Häfner, S., Eckardt, S., Luther, T. & Könke, C. (2006). Mesoscale modeling of concrete: geometry and numerics. Computers & Structures, 84(7), 450-461. (Crossref)
Jin, L., Yu, W., Du, X. & Yang, W. (2020). Mesoscale simulations of size effect on concrete dynamic splitting tensile strength: influence of aggregate content and maximum aggregate size. Engineering Fracture Mechanics, 230, 106979. https://doi.org/10.1016/j.engfracmech.2020.106979 (Crossref)
Jirásek, M. (2000). Comparative study on finite elements with embedded discontinuities. Computer Methods in Applied Mechanics and Engineering, 188(1-3), 307-330. (Crossref)
Kachanov, L. (1986). Introduction to continuum damage mechanics. Berlin: Springer Science & Business Media. (Crossref)
Karavelić, E., Nikolić, M., Ibrahimbegovic, A. & Kurtović, A. (2019). Concrete meso-scale model with full set of 3D failure modes with random distribution of aggregate and cement phase. Part I: formulation and numerical implementation. Computer Methods in Applied Mechanics and Engineering, 344, 1051-1072. (Crossref)
Kim, M., Buttlar, W.G., Baek, J. & Al-Qadi, I.L. (2009). Field and laboratory evaluation of fracture resistance of illinois hot-mix asphalt overlay mixtures. Transportation Research Record, 2127(1), 146-154. (Crossref)
Kim, S.M. & Al-Rub, R.K.A. (2011). Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research, 41(3), 339-358. (Crossref)
Kurumatani, M., Terada, K., Kato, J., Kyoya, T. & Kashiyama, K. (2016). An isotropic damage model based on fracture mechanics for concrete. Engineering Fracture Mechanics, 155, 49-66. (Crossref)
Lemaitre, J. & Chaboche, J.L. (1994). Mechanics of solid materials. Cambridge: Cambridge University Press.
Moës, N., Dolbow, J. & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. (Crossref)
Reuss, A. (1929). Calculation of the yield point of mixed crystals. Journal of Applied Mathematics and Mechanics, 9(1), 49-58.
Rots, J.G. (1988). Computational modeling of concrete fracture. Delft: Technische Hogeschool Delft.
Rots, J.G. & Blaauwendraad, J. (1989). Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating? HERON, 34(1), 1989.
Rots, J.G., Nauta, P., Kuster, G.M.A. & Blaauwendraad, J. (1985). Smeared crack approach and fracture localization in concrete. HERON, 30(1), 1985.
Thilakarathna, P.S.M., Baduge, K.K., Mendis, P., Vimonsatit, V. & Lee, H. (2020). Mesoscale modelling of concrete – a review of geometry generation, placing algorithms, constitutive relations and applications. Engineering Fracture Mechanics, 231, 106974. https://doi.org/10.1016/j.engfracmech.2020.106974 (Crossref)
Unger, J.F. & Eckardt, S. (2011). Multiscale modeling of concrete. Archives of Computational Methods in Engineering, 18(3), 341-393. (Crossref)
Unger, J.F., Eckardt, S. & Kooenke, C. (2011). A mesoscale model for concrete to simulate mechanical failure. Computers & Concrete, 8(4), 401-423. (Crossref)
Wagnoner, M.P., Buttlar, W. & Paulino, G.H. (2005). Disk-shaped compact tension test for asphalt concrete fracture. Experimental Mechanics, 45(3), 270-277. (Crossref)
Wagnoner, M.P., Buttlar, W.G., Paulino, G.H. & Blankenship, P. (2006). Laboratory testing suite for characterization of asphalt concrete mixtures obtained from field cores (with discussion). Journal of the Association of Asphalt Paving Technologists, 75, 815-851.
Xie, Z.H., Guo, Y.C., Yuan, Q.Z. & Huang, P.Y. (2015). Mesoscopic numerical computation of compressive strength and damage mechanism of rubber concrete. Advances in Materials Science and Engineering, 2015, 257984. https://doi.org/10.1155/2015/279584 (Crossref)
Zhang, Z., Song, X., Liu, Y., Wu, D. & Song, C. (2017). Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm. Composites Science and Technology, 149, 235-245. (Crossref)
Zhou, R. & Lu, Y. (2018). A mesoscale interface approach to modelling fractures in concrete for material investigation. Construction and Building Materials, 165, 608-620. (Crossref)
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.