Main Article Content
Article Details
Abdulkareem, O.A., Ramli, M. & Matthews, J.C. (2019). Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: an early age evaluation. Composites Part B: Engineering, 174, 106941. https://doi.org/10.1016/j.compositesb.2019.106941
ASTM International [ASTM] (2002). Standard test method for flexural strength of concrete (ASTM C78-02). West Conshohocken (PA): ASTM International.
ASTM International [ASTM] (2004). Standard test method for splitting tensile strength of cylindrical concrete specimens (ASTM C496-04). West Conshohocken (PA): ASTM International.
ASTM International [ASTM] (2005). Standard test method for slump of hydraulic-cement concrete (ASTM C143/C 143M-05a). West Conshohocken (PA): ASTM International.
ASTM International [ASTM] (2008). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (ASTM C618-08a). West Conshohocken (PA): ASTM International.
ASTM International [ASTM] (2017). Standard specification for chemical admixtures for concrete (ASTM C494-C494M). West Conshohocken (PA): ASTM International.
Astutiningsih, S. & Liu, Y. (2005). Geopolymerisation of Australian slag with effective dissolution by the alkali. In Proceedings of the World Congress Geopolymer (pp. 69-73). Geopolymer Institute: Saint Quentin, France.
Bai, J., Chaipanich, A., Kinuthia, J.M., O’Farrell, M., Sabir, B.B., Wild, S. & Lewis, M.H. (2003). Compressive strength and hydration of wastepaper sludge ash–ground granulated blastfurnace slag blended pastes. Cement and Concrete Research, 33(8), 1189-1202.
British Standards Institute [BSI] (2000). Testing concrete. Part 116: Method for determination of compressive strength of concrete cubes (BS 1881-116:1983). London: British Standards Institute.
Chowdhury, S., Maniar, A. & Suganya, O.M. (2015). Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. Journal of Advanced Research, 6(6), 907-913.
Davidovits, J. (2020). Geopolymer chemistry and applications. 5th ed. Saint-Quentin, France: Geopolymer Institute.
Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A. & van Deventer, J.S. (2007). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933.
Ekaputri, J.J. & Junaedi, S. (2017). Effect of curing temperature and fiber on metakaolin- -based geopolymer. Procedia Engineering, 171, 572-583.
Etiegni, L. & Campbell, A.G. (1991). Physical and chemical characteristics of wood ash. Bioresource Technology, 37(2), 173-178.
Fairbairn, E.M., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D. & Silvoso, M.M. (2010). Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management, 91(9), 1864-1871.
Fernandez-Jimenez, A.M., Palomo, A. & Lopez-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106-112.
Fernández-Jiménez, A., García-Lodeiro, I. & Palomo, A. (2007). Durable characteristics of alkali activated fly ashes. Journal of Material Sciences, 42, 3055-3065.
Frías, M., García, R., Vigil, R. & Ferreiro, S. (2008). Calcination of art paper sludge waste for the use as a supplementary cementing material. Applied Clay Science, 42(1-2), 189-193.
García, R., Villa, R.V. de la, Vegas, I., Frías, M. & Rojas, M.S. de (2008). The pozzolanic properties of paper sludge waste. Construction and Building Materials, 22(7), 1484-1490.
Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489-1498.
Hardjito, D., Wallah, S.E., Sumajouw, D.M. & Rangan, B.V. (2004). On the development of fly ash-based geopolymer concrete. Materials Journal, 101(6), 467-472.
Iraqi Central Agency for Standardization and Quality Control [ICASQC] (1984). Iraqi standards for natural aggregate resources for concrete (IQS 45/1984). Baghdad: Iraqi Central Agency for Standardization and Quality Control (translated from Arabic edition).
Ishimoto, H., Origuchi, T. & Yasuda, M. (2000). Use of papermaking sludge as new material. Journal of Materials in Civil Engineering, 12(4), 310-313.
Letelier, V., Henríquez-Jara, B.I., Manosalva, M. & Moriconi, G. (2019). Combined use of waste concrete and glass as a replacement for mortar raw materials. Waste Management, 94, 107-119.
Luga, E. & Peqini, K. (2019). The Influence of Oxide Content on the Properties of Fly Ash/Slag Geopolymer Mortars Activated with NaOH. Periodica Polytechnica Civil Engineering, 63(4), 1217-1224.
Malaszkiewicz, D. & Jastrzebski, D. (2018). Lightweight self-compacting concrete with sintered fly-ash aggregate. Scientific Review – Engineering and Environmental Sciences, 27(3), 328-337.
Mehta, A. & Siddique, R. (2018). Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. Journal of Cleaner Production, 205, 49-57.
Mozaffari, E., Kinuthia, J.M., Bai, J. & Wild, S. (2009). An investigation into the strength development of wastepaper sludge ash blended with ground granulated blastfurnace slag. Cement and Concrete Research, 39(10), 942-949.
Naik, T.R., Kraus, R.N., & Siddique, R. (2003). Controlled low-strength materials containing mixtures of coal ash and new pozzolanic material. Materials Journal, 100(3), 208-215.
Pachamuthu, S. & Thangaraju, P. (2017). Effect of incinerated paper sludge ash on fly ash-based geopolymer concrete. Građevinar, 69(9), 851-859.
Rangan, B.V. (2008). Fly ash-based geopolymer concrete. Perth: Curtin University of Technology.
Risdanareni, P., Karjanto, A. & Khakim, F. (2016). Physical properties of volcanic ash based geopolymer concrete. Materials Science Forum, 841, 1-6.
Ryu, G.S., Lee, Y.B., Koh, K.T. & Chung, Y.S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409-418.
Shi, C., Wu, Y., Riefler, C. & Wang, H. (2005). Characteristics and pozzolanic reactivity of glass powders. Cement and Concrete Research, 35(5), 987-993.
Tam, V.W., Soomro, M. & Evangelista, A.C.J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272-292.
Thaarrini, J. & Ramasamy, V. (2016). Properties of foundry sand, ground granulated blast furnace slag and bottom ash based geopolymers under ambient conditions. Periodica Polytechnica Civil Engineering, 60(2), 159-168.
Turner, L.K., & Collins, F.G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130.
Udoeyo, F.F., Inyang, H., Young, D.T. & Oparadu, E.E. (2006). Potential of wood waste ash as an additive in concrete. Journal of Materials in Civil Engineering, 18(4), 605-611.
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.