Reduction of the soil environmental impact caused by the presence of total petroleum hydrocarbons (TPH) by using Pseudomonas sp.

Main Article Content

K. PAREDES PÁLIZ
A.M. CUNACHI
E. LICTA


Keywords : bioaugmentation, total petroleum hydrocarbons, efficiency, bacterium
Abstract

This research focuses on the bioaugmentation with Pseudomonas sp. (native) and Pseudomonas aeruginosa (commercial) for the biodegradation of total petroleum hydrocarbons (TPH) of the environmental soil samples of the AqLab laboratory in Orellana, Ecuador. Two treatments of sterilized soil (one inoculated with the native strain and the other inoculated with the commercial strain), where used for physical- -chemical analyzes as well as the degradation of TPH. They were evaluated every 20 days for a total period of 80–100 days. The native bacterium was isolated from the laboratory agglomerates in a selective culture medium specific for Pseudomonas sp. The biodegradation of the TPH exhibited a positive result after 80 and 100 days of treatment, with a reduction of 84 and 96% of initial TPH after the bacterial inoculation. The comparison between the two strains evaluated, commercial and native, showed a greater efficiency of biodegradation by the native strain isolated directly from the agglomerates, suggesting working with native strains of the place that have a greater adaptability to the contaminated environment that would ensure bioremediation processes faster and more efficient, low cost and environmentally friendly.

Article Details

How to Cite
PAREDES PÁLIZ, K. ., CUNACHI, A., & LICTA, E. (2022). Reduction of the soil environmental impact caused by the presence of total petroleum hydrocarbons (TPH) by using Pseudomonas sp. Scientific Review Engineering and Environmental Sciences (SREES), 30(4), 573–584. https://doi.org/10.22630/PNIKS.2021.30.4.48
References

Abas, N., Kalair, A. & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49.

Anza, M., Salazar, O., Epelde, L., Becerril, J.M., Alkorta, I. & Garbisu, C. (2019). Remediation of organically contaminated soil through the combination of assisted phytoremediation and bioaugmentation. Applied Sciences, 9(22), 4757. https://doi.org/10.3390/app9224757

American Public Health Association, American Water Works Association, Water Environment Federation [APHA, AWWA, WEF] (2017). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

Araujo-Blanco, J., Rojas, Y., Depool, B., Antequera, A., Rodríguez, J. & Yegres, F. (2016). Microanálisis de una cepa de Aspergillus niger biocatalizadora de hidrocarburos policíclicos aromáticos HPA [Microanalysis of a strain Aspergillus niger catalyzing polycyclic hydrocarbons aromatics HPA]. Acta Microscopica, 25(2), 98-110.

Arora, N.K. (ed.). (2015). Plant microbes symbiosis: applied facets. New Delhi: Springer India.

Barboza, N.R., Guerra-Sá, R. & Leão, V.A. (2016). Mechanisms of manganese bioremediation by microbes: an overview. Journal of Chemical Technology & Biotechnology, 91(11), 2733-2739.

Brito, R.S., Flores, G.P., Howard, A.M.M., Cedillo, F.D. & Hu, E.T.W. (2008). Degradación de n-alcanos por Pseudomonas aeruginosa MGP-1 [Degradation of n-alkanes by Pseudomonas aeruginosa MGP-1]. Investigación Universitaria Multidisciplinaria: Revista de Investigación de la Universidad Simón Bolívar, 7(11), 123-132.

Cevallos Paguay, T.C. & García Díaz, J.D. (2018). Evaluación de la biodegradación de suelos contaminados con hidrocarburos utilizando Aspergillus niger, Pleurotus ostreatus y Pseudomonas aeruginosa [Evaluation of the biodegradation of soils contaminated with hydrocarbons using Aspergillus niger, Pleurotus ostreatus and Pseudomonas aeruginosa]. Quito: Politecnica Salesiana University.

Decreto Ejecutivo 1215. Reglamento sustitutivo del reglamento ambiental para las operaciones hidrocarburíferas en el Ecuador. Registro Oficial 265, 13.02.2001, ultima modificación 29.10.2010 [Executive Decree 1215. Replacement regulation of the environmental regulation for hydrocarbon operations in Ecuador. Official Registry 265, 13.02.2001, last modified 10.29.2010].

Decreto Ejecutivo 3516. Reforma texto unificado legislacion secundaria, medio ambiente. Registro Oficial, suplemento 2, TULSMA libro VI, anexo 2, ultima modificación 04.05.2015 [Executive Decree 3516. Reform of the unified text of secondary legislation, environment. Official Register, supplement 2, TULSMA book VI, annex 2, last modified 04.05.2015].

Harmsen, J. & Rietra, R.P. (2018). 25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil. Chemosphere, 207, 229-238.

Herndon, J.M. & Whiteside, M. (2019). Further evidence that particulate pollution is the principal cause of global warming: humanitarian considerations. Journal of Geography, Environment and Earth Science International, 21(1), 1-11.

Hlihor, R.M., Gavrilescu, M., Tavares, T., Favier, L. & Olivieri, G. (2017). Bioremediation: an overview on current practices, advances, and new perspectives in environmental pollution treatment. BioMed Research International, 2017, 6327610. https://doi. org/10.1155/2017/6327610

Jiang, Y., Brassington, K.J., Prpich, G., Paton, G.I., Semple, K.T., Pollard, S.J. & Coulon, F. (2016). Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere, 161, 300-307.

Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y.B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere, 168, 944-968.

Landon, J.R. (1991). Booker Tropical Soil Manual. A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. London: Routledge.

Luján, D. (2019). Uso de Pseudomonas aeruginosa en biorremediación [Use of Pseudomonas aeruginosa in bioremediation]. Bio Tecnología, 23(1), 32-42.

Merchán-Rivera, P. & Chiogna, G. (2017). Assessment of contamination by petroleum hydrocarbons from oil exploration and production activities in Aguarico, Ecuador. Munich: Technical University of Munich.

Morales-Guzmán, G., Ferrera-Cerrato, R., Carmen Rivera-Cruz, M. del, Torres-Bustillos, L. G., Arteaga-Garibay, R.I., Mendoza- -López, M.R., Esquivel-Cote, R. & Alarcón, A. (2017). Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Applied Soil Ecology, 121, 127-134.

Ojuederie, O.B. & Babalola, O.O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health, 14(12), 1504. https://doi.org/10.3390/ijerph14121504

Paredes-Páliz, K.I., Caviedes, M.A., Doukkali, B., Mateos-Naranjo, E., Rodríguez-Llorente, I.D. & Pajuelo, E. (2016a). Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environmental Science and Pollution Research, 23(19), 19825- -19837.

Paredes-Páliz, K.I., Pajuelo, E., Doukkali, B., Caviedes, M.Á., Rodríguez-Llorente, I.D. & Mateos-Naranjo, E. (2016b). Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas. Marine Pollution Bulletin, 110(1), 396-400.

Powell, L.C., Khan, S., Chinga-Carrasco, G., Wright, C.J., Hill, K. E. & Thomas, D.W. (2016). An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydrate Polymers, 137, 191-197.

Prakash, B., Irfan, M. (2011). Pseudomonas aeruginosa is present in crude oil contaminated sites of Barmer Region (India). Journal of Bioremediation and Biodegradation, 2(5), 129. https://doi.org/10.4172/2155-6199.1000129

Quintella, C.M., Mata, A.M. & Lima, L.C. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of Environmental Management, 241, 156-166.

Rabus, R., Boll, M., Heider, J., Meckenstock, R.U., Buckel, W., Einsle, O., Ermler, U., Golding, B.T., Gunsalus, R.P., Kroneck, P.M.H., Krüger, M., Lueders, T., Martins, B. M., Musat, F., Richnow, H. H., Schink, B., Seifert, J., Szaleniec, M., Treude, T., Ullmann, G.M., Vogt, C., Bergen, M. von & Wilkes, H. (2016). Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. Journal of Molecular Microbiology and Biotechnology, 26(1-3), 5-28.

Safdari, M.S., Kariminia, H.R., Nejad, Z.G. & Fletcher, T.H. (2017). Study potential of indigenous Pseudomonas aeruginosa and Bacillus subtilis in bioremediation of dieselcontaminated water. Water, Air, & Soil Pollution, 228(1), 1-7.

Safdari, M.S., Kariminia, H.R., Rahmati, M., Fazlollahi, F., Polasko, A., Mahendra, S., Wilding, W.V. & Fletcher, T.H. (2018). Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil. Journal of Hazardous Materials, 342, 270-278.

Schwartz, G., Ben-Dor, E. & Eshel, G. (2012). Quantitative analysis of total petroleum hydrocarbons in soils: comparison between reflectance spectroscopy and solvent extraction by 3 certified laboratories. Applied and Environmental Soil Science, 2012, 751956. https://doi.org/10.1155/2012/751956

Singh, R.L. (ed.). (2017). Principles and applications of environmental biotechnology for a sustainable future. Singapore: Springer.

Sun, Y., Chen, W., Wang, Y., Guo, J., Zhang, H. & Hu, X. (2021). Nutrient depletion is the main limiting factor in the crude oil bioaugmentation process. Journal of Environmental Sciences, 100, 317-327.

Statistics

Downloads

Download data is not yet available.
Recommend Articles