Spatial mapping of the leaf area index using remote sensing and ground measurements – the Biebrza National Park case study

Main Article Content

Stefan Ignar
Sylwia Szporak-Wasilewska
Małgorzata Gregorczyk

Keywords : leaf area index, wetlands, remote sensing, spectral vegetation indices, Biebrza

The purpose of the described research was an attempt to estimate the leaf area index (LAI) parameter describing the structure of the vegetation based on the Landsat 5TM satellite imagery and field measurements made with the use of an optical plant canopy analyzer. The study was carried out in north-eastern Poland in the Biebrza river valley within the boundaries of the Biebrza National Park during the growing season of the year 2007. There were 13 spectral indices given in the literature known to be correlated with the LAI. The highest coefficient of determination and the highest correlation coefficient were obtained for the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI) indices for the wetland areas in the Biebrza river valley. The field measurements of the leaf area index and its spatial representation on satellite image show that the vegetation of natural river valleys is characterized by high spatial and seasonal variability. The study of the LAI on such large natural areas that are extensively used also requires knowledge of the methods of land use and the application of individual agrotechnical measures.

Article Details

How to Cite
Ignar, S., Szporak-Wasilewska, S., & Gregorczyk, M. (2023). Spatial mapping of the leaf area index using remote sensing and ground measurements – the Biebrza National Park case study. Scientific Review Engineering and Environmental Sciences (SREES), 32(2), 175–185.

Birth, G. S. & McVey, G. R. (1968). Measuring the colour of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60 (6), 640–643. (Crossref)

Broge, N. H. & Leblanc, E. (2000). Comparing prediction power and stability of broadband and Hyperspectral vegetation indices for estimating of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76 (2), 156–172. (Crossref)

Budzyńska, M., Dąbrowska-Zielińska, K., Turlej, K. Małek, I. & Bartold, M. (2011). Monitoring przyrodniczy Bagien Biebrzańskich z zastosowaniem teledetekcji. Woda – Środowisko – Obszary Wiejskie, 11 (3), 39–64.

Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22 (3), 229–242. (Crossref)

Dąbrowska-Zielińska, K., Gruszczyńska, M., Lewiński, S., Hościło, A. & Bojanowski, J. (2009). Application of remote sensing and in situ information to the management of wetlands in Poland. Journal of Environmental Management, 90 (7), 2261–2269. (Crossref)

Darvishzadeh, R., Skidmore, A., Atzberger, C. & Wieren, S. van (2008). Estimation of vegetation LAI from hyperspectral reflectance data: effects of soil type and plant architecture. International Journal of Applied Earth Observation and Geoinformation, 10 (3), 358–373. (Crossref)

Darvishzadeh, R., Atzberger, C., Skidmore, A. & Schlerf, M. (2011). Mapping grassland leaf area index with airborne Hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (6), 894–906. (Crossref)

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25 (3), 295–309. (Crossref)

Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50 (4), 663–666. (Crossref)

Kaufman, Y. J. & Tanré, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions Geoscience of Remote Sensing, 30 (2), 261–270. (Crossref)

LI-COR Biosciences, Inc. (1992). LAI-2000 Plant Canopy Analyzer. Instruction Manual. Retrieved form: [accessed: 27.04.2023].

Pinty, B. & Verstraete, M. M. (1992). GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio, 101, 15–20. (Crossref)

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48 (2), 119–126. (Crossref)

Rock, B. N., Vogelmann, J. E., Williams, D. L., Vogelmann, A. F. & Hoshizaki, T. (1986). Remote detection of forest damage. BioScience, 36 (7), 439–445. (Crossref)

Roujean, J. L. & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51 (3), 375–384. (Crossref)

Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publications, 351 (1), 309–317.

Szporak, S. (2012). Zastosowanie metod teledetekcyjnych dla szacowania ewapotranspiracji na przykładzie Dolnego Basenu rzeki Biebrzy [Remote sensing methods in assessment of evapotranspiration in the Biebrza River Lower Basin] (doctoral thesis). Warsaw University of Life Sciences, Warsaw.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8 (2), 127–150. (Crossref)

U.S. Geological Survey [USGS] (2023). Earth Explorer portal. Retrieved from: [accessed 27.04.2023].

Welles, J. M. & Cohen, S. (1996). Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany, 47 (9), 1335–1342. (Crossref)



Download data is not yet available.
Recommend Articles