A systematic review of clay shale research development for slope construction

Main Article Content

Siti N. Fitri
Niken S. Surjandari
Solihin As’Ad


Keywords : clay shale, systematic review, VOSviewer, slope, bibliometric
Abstract

The issue of stability controlling cutting slopes is particularly important in clay-shale slopes, a typical expanding sedimentary layer with poor engineering geological conditions and mechanical characteristics. Therefore, research on the causes of failure and remedies for clay-shale cutting slopes is required to serve as an overview for handling and preserving clay-shale slopes in identical conditions. However, the trusted information about the need for further related clay shale research and clay shale in slope stability has yet to be specifically presented. This review study summarizes the published research for clay shale beginning in 1980, presents a bibliometric analysis to examine the published research based on year and country, and provides various study trends in cluster diagram using the VOSviewer program. The analysis also summarized some key goals, effective methodology, and significant findings from the most recent studies to extract information from them that would benefit future research. In conclusion, the results show the need for developing research to fill the knowledge gap regarding clay shale, landslide, and clay mineralogy. In addition, the clay shale slope analysis has revealed the need for additional research into dynamic force and its deformation.

Article Details

How to Cite
Fitri, S. N., Surjandari, N. S., & As’Ad, S. (2023). A systematic review of clay shale research development for slope construction. Scientific Review Engineering and Environmental Sciences (SREES), 32(4), 357–375. https://doi.org/10.22630/srees.5212
References

Agrawal, V. K., Manhas, G. S. & Sharda, Y. P. (1993). Problems of an earth dam on weak rocks in Outer Himalayas, Punjab, India. Engineering Geology Special Publication, 8, 441–446. https://doi.org/10.1016/0148-9062(94)90801-x (Crossref)

Agung, P., Pramusandi, S. & Damianto, B. (2017). Identification and classification of clayshale characteristic and some considerations for slope stability. African Journal of Environmental Science and Technology, 11 (4), 163–197. https://doi.org/10.5897/ajest2014.1792 (Crossref)

Al-Arfaj, M. K., Amanullah, M., Sultan, A. S., Hossain, E. & Abdulraheem, A. (2014). Chemical and mechanical aspects of wellbore stability in shale formations: a literature review. Society of Petroleum Engineers – 30th Abu Dhabi International Petroleum Exhibition and Conference, ADIPEC 2014: Challenges and Opportunities for the Next 30 Years, 1, 1–11. https://doi.org/10.2118/171682-ms (Crossref)

An, N., Zagorščak, R. & Thomas, H. R. (2022). Adsorption characteristics of rocks and soils, and their potential for mitigating the environmental impact of underground coal gasification technology: a review. Journal of Environmental Management, 305, 114390. https://doi.org/10.1016/j.jenvman.2021.114390 (Crossref)

Aristizabal, D., Lara, A. J., Payares, V. & Alzate, A. (2021). Bibliometric analysis and research trends of a journal: Magazine of Civil Engineering. Library Philosophy and Practice, 5414. Retrieved from: https://digitalcommons.unl.edu/libphilprac/5414 [accessed: 31.07.2023].

Bayer, B., Simoni, A., Mulas, M., Corsini, A. & Schmidt, D. (2018). Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology, 308, 293–306. https://doi.org/10.1016/j.geomorph.2018.02.020 (Crossref)

Bonini, M., Debernardi, D., Barla, M. & Barla, G. (2009). The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mechanics and Rock Engineering, 42, 361–388. https://doi.org/10.1007/s00603-007-0147-6 (Crossref)

Burnham, J. F. (2006). Scopus database: a review. Biomedical Digital Libraries, 3 (1), 1–8. https://doi.org/10.1186/1742-5581-3-1 (Crossref)

Cavalcante, F., Belviso, C., Piccarreta, G. & Fiore, S. (2014). Grain-size control on the rare earth elements distribution in the late diagenesis of cretaceous shales from the Southern Apennines (Italy). Journal of Chemistry, 2014, 841747. https://doi.org/10.1155/2014/841747 (Crossref)

Comegna, L. & Picarelli, L. (2022). Experience about landslide-tunnel interaction in tectonized clay shales [Esperienze sull’interazione franagalleria in argilliti tettonizzate]. Rivista Italiana Di Geotecnica, 56 (1), 17–31. https://doi.org/10.19199/2022.1.0557-1405.017

Costanzo, A., d’Onofrio, A. & Silvestri, F. (2019). Seismic response of a geological, historical and architectural site: the Gerace cliff (southern Italy). Bulletin of Engineering Geology and the Environment, 78, 5617–5633. https://doi.org/10.1007/s10064-019-01515-0 (Crossref)

Di Leo, P., Dinelli, E., Mongelli, G. & Schiattarella, M. (2002). Geology and geochemistry of Jurassic pelagic sediments, Scisti silicei Formation, southern Apennines, Italy. Sedimentary Geology, 150 (3–4), 229–246. https://doi.org/10.1016/S0037-0738(01)00181-6 (Crossref)

Ding, X. & Yang, Z. (2022). Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace. Electronic Commerce Research, 22 (3), 787–809. https://doi.org/10.1007/s10660-020-09410-7 (Crossref)

Dondi, M. (1999). Clay materials for ceramic tiles from the Sassuolo District (northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 15 (3–4), 337–366. https://doi.org/10.1016/S0169-1317(99)00027-7 (Crossref)

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W. M. (2021). How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 (Crossref)

Einstein, H. H. (2000). Tunnels in Opalinus Clayshale – a review of case histories and new developments. Tunnelling and Underground Space Technology, 15 (1), 13–29. https://doi.org/10.1016/s0886-7798(00)00025-0 (Crossref)

Gouw, T. L. (2018). Geosynthetics application in Indonesia – a case histories. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 49 (4), 132–144. Retrieved from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057556087&partnerID=40&md5=fae89e00e7214f6e7db4af67f592bf0a [accessed: 31.07.2023].

Gouw, T. L., Lelli, M., Cerro, M., Meinata, L. E., Laneri, R. & Rimoldi, P. (2016). High hybrid reinforced soil slope as runway support – Tana Toraja airport case study. In GA 2016 – 6th Asian Regional Conference on Geosynthetics: Geosynthetics for Infrastructure Development, Proceedings, 2016, 364–374. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009080866&partnerID=40&md5=ac6044bb584e6b2f291f7f3175dd070e [accessed: 31.07.2023].

Hendry, H., Somantri, A. K., Febriansya, A. & Nurhadi, M. D. (2020). Substructure reinforcement study of Cisomang bridge at Purwakarta-Bandung-Cileunyi toll road, West Java Province, Indonesia. IOP Conference Series: Materials Science and Engineering, 732 (1), 012027. https://doi.org/10.1088/1757-899X/732/1/012027 (Crossref)

Herbosch, A., Liégeois, J. P. & Pin, C. (2016). Coticules of the Belgian type area (Stavelot-Venn Massif): Limy turbidites within the nascent Rheic oceanic basin. Earth-Science Reviews, 159, 186–214. https://doi.org/10.1016/j.earscirev.2016.05.012 (Crossref)

Hobson, G. D. (1980). Developments in Petroleum Geology – 2. ‎Amsterdam: Elsevier Science.

Huadi, F., Aldea, C., Mackereth, B. & Mukhlis, T. (2010). Successful KCI-free, highly inhibitive and cost-effective water-based application, offshore East Kalimantan, Indonesia. Society of Petroleum Engineers – IADC/SPE Asia Pacific Drilling Technology Conference 2010, 2010, 125–131. Retrieved from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953115141&partnerID=40&md5=700d1d1f80306a5c23762a3d5c6a06a6 [accessed: 31.07.2023].

Jinhua, F., Shixiang, L., Qiheng, G., Wen, G., Xinping, Z. & Jiangyan, L. (2022). Enrichment conditions and favorable area optimization of continental shale oil in Ordos Basin. Shiyou Xuebao/Acta Petrolei Sinica, 43 (12), 1702. https://doi.org/10.7623/syxb202212003a

Khairul, N. A. S. & Musta, B. (2022). Engineering properties and slope inventory of clayey soil from the Trusmadi Formation in Bundu Tuhan, Sabah. IOP Conference Series: Materials Science and Engineering, 1229 (1), 012010. https://doi.org/10.1088/1757-899x/1229/1/012010 (Crossref)

Kuzior, A. & Sira, M. (2022). A bibliometric analysis of blockchain technology research using VOSviewer. Sustainability, 14 (13), 8206. https://doi.org/10.3390/su14138206 (Crossref)

McAllister, J. T., Lennertz, L. & Atencio Mojica, Z. (2022). Mapping a discipline: a guide to using VOSviewer for bibliometric and visual analysis. Science & Technology Libraries, 41 (3), 319–348. https://doi.org/10.1080/0194262X.2021.1991547 (Crossref)

Mesri, G. & Shahien, M. (2004). Closure to “Residual Shear Strength Mobilized in First-Time Slope Failures” by G. Mesri and M. Shahien. Journal of Geotechnical and Geoenvironmental Engineering, 130 (5), 548–549. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(548) (Crossref)

Mesri, G., Wang, C. & Kane, T. (2022). Meaning, measurement, and field application of fully softened shear strength of stiff clays and clay shales. Canadian Geotechnical Journal, 59 (6), 952–964. https://doi.org/10.1139/cgj-2020-0663 (Crossref)

Mo, K. H., Ling, T. C., Tan, T. H., Leong, G. W., Yuen, C. W. & Shah, S. N. (2021). Alkali-silica reactivity of lightweight aggregate: a brief overview. Construction and Building Materials, 270, 121444. https://doi.org/10.1016/j.conbuildmat.2020.121444 (Crossref)

Mongelli, G., Critelli, S., Dinelli, E., Paternoster, M. & Perri, F. (2010). Mn-and Fe-carbonate rich layers in Meso-Cenozoic shales as proxies of environmental conditions: A case study from the southern Apennine, Italy. Geochemical Journal, 44 (3), 211–223. https://doi.org/10.2343/geochemj.1.0064 (Crossref)

Morrisey, L. J. (2020). Bibliometric and bibliographic analysis in an era of electronic scholarly communication. In W. Wei (Ed.), Scholarly Communication in Science and Engineering Research in Higher Education (p. 12). Abingdon-on-Thames: Routledge.

Mulyawati, I. B. & Ramadhan, D. F. (2021). Bibliometric and visualized analysis of scientific publications on geotechnics fields. ASEAN Journal of Science and Engineering Education, 1 (1), 37–46. https://doi.org/10.17509/ajsee.v1i1.32405 (Crossref)

Nandiyanto, A. B. D. & Al Husaeni, D. F. (2021). A bibliometric analysis of materials research in Indonesian journal using VOSviewer. Journal of Engineering Research (Kuwait), 9, 1–16. https://doi.org/10.36909/jer.ASSEEE.16037 (Crossref)

Nomura, R. (2003). Assessing the roles of artificial vs. natural impacts on brackish lake environments: foraminiferal evidence from Lake Nakaumi, southwest Japan. The Journal of the Geological Society of Japan, 109 (4), 197–214. https://doi.org/10.5575/geosoc.109.197 (Crossref)

Pardoyo, B., Kresno, W. S., Fahreza, D. A. & Maulana, T. A. (2020). The effect of clay shale drying on the reduction of compressive strength and durability in bawen sub-district, semarang regency. Civil Engineering and Architecture, 8 (6), 1359–1369. https://doi.org/10.13189/cea.2020.080619 (Crossref)

Pellegrino, L., Natalicchio, M., Birgel, D., Pastero, L., Carnevale, G., Jordan, R. W., Peckmann, J., Zanellato, N. & Dela Pierre, F. (2023). From biogenic silica and organic matter to authigenic clays and dolomite: insights from Messinian (upper Miocene) sediments of the Northern Mediterranean. Sedimentology, 70 (2), 1–33. https://doi.org/10.1111/sed.13053 (Crossref)

Picarelli, L., Di Maio, C. & De Rosa, J. (2021). Processes and mechanisms governing the transition of slides in tectonized clays and clay shales into rapid earthflows. Rivista Italiana Di Geotecnica, 55 (4), 53–67.

Picarelli, L., Olivares, L., Di Maio, C., Silvestri, F., Di Nocera, S. & Urciuoli, G. (2003). Structure properties and mechanical behaviour of the highly plastic intensely fissured Bisaccia clay shale. Retrieved from: https://www.researchgate.net/profile/Caterina-Di-Maio/publication/284054317_Structure_properties_and_mechanical_behaviour_of_the_highly_plastic_intensely_fissured_Bisaccia_clay_shale/links/57ac770208ae0932c9748245/Structure-properties-and-mechanical-behaviour-of-the-highly-plastic-intensely-fissured-Bisaccia-clay-shale.pdf [accessed: 31.07.2023].

Picarelli, L., Urciuoli, G., Mandolini, A. & Ramondini, M. (2006). Softening and instability of natural slopes in highly fissured plastic clay shales. Natural Hazards and Earth System Sciences, 6 (4), 529–539. https://doi.org/10.5194/nhess-6-529-2006 (Crossref)

Pingquan, W., Tao, T., Junlin, S., Qiurun, W., Ping, Y. & Yang, B. (2022). Review of application of molecular simulation in inhibiting surface hydration expansion of clay minerals. Chemistry and Technology of Fuels and Oils, 58 (1), 63–76. https://doi.org/10.1007/s10553-022-01352-0 (Crossref)

Powell, J. S., Siemens, G. A., Take, W. A. & Remenda, V. H. (2013). Characterizing the swelling potential of Bearpaw clayshale. Engineering Geology, 158, 89–97. https://doi.org/10.1016/j.enggeo.2013.03.006 (Crossref)

Rahardjo, P. P., Halim, Y. & Wisanto, H. (2012). The use of geotechnical instrumentation and finite element analysis for assessment of bridge foundation stability due to breccia resliding over clayshale. In S. Miura, T. Ishikawa, N. Yoshida, Y. Hisari & N. Abe (Eds), Advances in Transportation Geotechnics II (pp. 737–742). CRC Press/Balkema. (Crossref)

Rosly, M. H., Mohamad, H. M., Bolong, N. & Harith, N. S. H. (2022). An overview: relationship of geological condition and rainfall with landslide events at East Malaysia. Trends in Sciences, 19 (8), 3464–3464. https://doi.org/10.48048/tis.2022.3464 (Crossref)

Sagitaningrum, F. H., Kamaruddin, S. A., Nazir, R., Soepandji, B. S. & Alatas, I. M. (2023). Lesson learned from weathering clay shale residual interface shear strength testing method. Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering, 2023, 523–531. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137766973&doi=10.1007%2f978-981-16-9348-9_46&partnerID=40&md5=1a1a9d5aa49ba7d3e8ebe345d2fe06dc [accessed: 31.07.2023].

Shahbazi, R., Elahi, J. & Khalili, L. (2022). Scientific outputs and co-authorship patterns in the fields of electronic, civil and mechanical engineering of Azarbaijan Shahid Madani University (2000–2019): a scientometric analysis. International Journal of Information Science and Management, 20 (2), 181–200.

Sharifigaliuk, H., Mahmood, S. M., Rezaee, R. & Saeedi, A. (2021). Conventional methods for wettability determination of shales: a comprehensive review of challenges, lessons learned, and way forward. Marine and Petroleum Geology, 133, 105288. https://doi.org/10.1016/j.marpetgeo.2021.105288 (Crossref)

Sharma, V. K. (1995). Probable risk estimation due to reservoir induced seismicity at Jamrani dam Project, Kumaon Himalaya, India. Bulletin of the International Association of Engineering Geology, 52 (1), 103–108. https://doi.org/10.1007/bf02602687 (Crossref)

Sharma, V. K. (1996). Probable risk estimation due to reservoir induced seismicity at Jamrani dam project, Kumaon Himalaya, India. (1996). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33 (6), 266A. https://doi.org/10.1016/0148-9062(96)81877-8 (Crossref)

Shields, D. H. (2022). Preliminary design of a deep open pit mine (Bukit Asam): an exercise in the engineering method. In Geotechnical Stability in Surface Mining (pp. 11–22). Boca Raton: CRC Press. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022937442&partnerID=40&md5=5dd6f0080d2e8c42065bd6e13d121154 [accessed: 31.07.2023].

Simatupang, P. T., Alatas, I. M., Redyananda, A. K. & Purnomo, E. A. (2022). Shear strength and durability behaviors of compacted weathered clay shale mixture using portland cement. Journal of the Civil Engineering Forum, 8 (2),169–178. https://doi.org/10.22146/jcef.3491 (Crossref)

Smeraglia, L., Giuffrida, A., Grimaldi, S., Pullen, A., La Bruna, V., Billi, A. & Agosta, F. (2021). Fault-controlled upwelling of low-T hydrothermal fluids tracked by travertines in a fold-and-thrust belt, Monte Alpi, Southern Apennines, Italy. Journal of Structural Geology, 144, 104276. https://doi.org/10.1016/j.jsg.2020.104276 (Crossref)

Snyder, H. (2019). Literature review as a research methodology: an overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039 (Crossref)

Soegoto, H., Soegoto, E. S., Luckyardi, S. & Rafdhi, A. A. (2022). A bibliometric analysis of management bioenergy research using vosviewer application. Indonesian Journal of Science and Technology, 7 (1), 89–104. https://doi.org/10.17509/ijost.v7i1.43328 (Crossref)

Squarzoni, G., Bayer, B., Franceschini, S. & Simoni, A. (2020). Pre-and post-failure dynamics of landslides in the Northern Apennines revealed by space-borne synthetic aperture radar interferometry (InSAR). Geomorphology, 369, 107353. https://doi.org/10.1016/j.geomorph.2020.107353 (Crossref)

Tamala, J. K., Maramag, E. I., Simeon, K. A. & Ignacio, J. J. (2022). A bibliometric analysis of sustainable oil and gas production research using VOSviewer. Cleaner Engineering and Technology, 7, 100437. https://doi.org/10.1016/j.clet.2022.100437 (Crossref)

Wang, X., Xu, Z., Ge, Z., Zavadskas, E. K. & Skačkauskas, P. (2020). An overview of a leader journal in the field of transport: A bibliometric analysis of computer-aided civil and infrastructure engineering from 2000 to 2019. Transport, 35 (6), 557–575. https://doi.org/10.3846/transport.2020.14140 (Crossref)

Eck, N. J. van & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84 (2), 523–538. https://doi.org/10.1007/s11192-009-0146-3 (Crossref)

Eck, N. J. van & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111, 1053–1070. https://doi.org/10.1007/s11192-017-2300-7 (Crossref)

Vassallo, R., De Rosa, J., Di Maio, C., Reale, D., Verde, S. & Fornaro, G. (2021). In situ and satellite long-term monitoring of two earthflows of the Italian southern Apennines and of the structures built on them [Monitoraggio di lungo periodo in situ e satellitare di due colate di terreni argillosi dell’Appennino meridionale e delle strutture su di esse costruite]. Rivista Italiana Di Geotecnica, 55 (4), 77–95. https://doi.org/10.19199/2021.4.0557-1405.077

Veniale, F., Delgado, A., Marinoni, L. & Setti, M. (2002). Dickite genesis in the ‘varicoloured’ clay-shale formation of the Italian Apennines: an isotopic approach. Clay Minerals, 37 (2), 255–266. https://doi.org/10.1180/0009855023720032 (Crossref)

Videras Rodríguez, M., Melgar, S. G., Cordero, A. S. & Márquez, J. M. A. (2021). A critical review of unmanned aerial vehicles (Uavs) use in architecture and urbanism: scientometric and bibliometric analysis. Applied Sciences, 11 (21), 9966. https://doi.org/10.3390/app11219966 (Crossref)

Yu, D., Xu, Z. & Antuchevičienė, J. (2019). Bibliometric analysis of the journal of civil engineering and management between 2008 and 2018. Journal of Civil Engineering and Management, 25 (5), 402–410. https://doi.org/10.3846/jcem.2019.9925 (Crossref)

Zanzinger, H., Koerner R. M. & Gartung, E. (Eds) (1986). Clay geosynthetic barries. London: A.A. Balkema. https://doi.org/10.1201/9781003078777 (Crossref)

Zhang, Q., Wang, J., Zhou, B. & Huang, J. (2022). Failure Mode and Countermeasures of Clay-shale Cutting Slope in Karawang Area, Indonesia [印尼Karawang地区泥页岩路堑边坡破坏模式及对策]. Journal of Railway Engineering Society, 39 (8), 35–39.

Statistics

Downloads

Download data is not yet available.
Recommend Articles