Application of UAV and ground measurements for urban vegetation cooling benefits assessment, Wilanów Palace case study

Main Article Content

Michał Trzeciak
Daria Sikorska

Keywords : ecosystem services, NDVI, urban vegetation, Urban Heat Island, climate change, UAV, cultural heritage sites

This research at the Wilanów Palace, Warsaw, assesses urban greenery’s cooling impacts in a cultural heritage site using remote sensing and on-site measurements, highlighting vegetation’s importance in urban climate control. The study combines soil temperature data, UAV thermal imagery, leaf area index (LAI), LiDAR, and NDVI analyses. Findings demonstrate a strong link between vegetation density and temperature: UAV land surface temperature (LST) ranged from 26.8° to 47.5°C, peaking at 72°C, while ground-based temperatures were between 19.5° and 29.2°C, lowest in dense vegetation areas. The statistical analysis confirmed significant temperature differences across vegetation types, with higher LAI areas showing lower temperatures. These results validate the cooling effect of dense vegetation, emphasizing green spaces’ significance in urban climate regulation within cultural heritage sites. The study informs sustainable urban design and conservation, underlining the critical role of vegetation in improving urban microclimates.

Article Details

How to Cite
Trzeciak, M., & Sikorska, D. (2024). Application of UAV and ground measurements for urban vegetation cooling benefits assessment, Wilanów Palace case study. Scientific Review Engineering and Environmental Sciences (SREES), 33(1), 53–68.

Akkurt, G. G., Aste, N., Borderon, J., Buda, A., Calzolari, M., Chung, D., Constanzo, V., Del Pero, C., Evola, G., Huerto-Cardenas, H. E., Lo Faro, A., Lucchi, E., Marletta, L., Nocera, F., Pracchi, V. & Turhan, C. (2020). Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions. Renewable and Sustainable Energy Reviews, 118, 109509. https://doi.10.1016/j.rser.2019.109509 (Crossref)

Andersson, E., Haase, D., Anderson, P., Cortinovis, C., Goodness, J., Kendal, D., Lausch, A., McPhearson, T., Sikorska, D. & Wellmann, T. (2021). What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. npj Urban Sustainability, 1 (1), 14. https://doi.10.1038/s42949-020-00008-4 (Crossref)

Aram, F., Solgi, E., Garcia, E. H. & Mosavi, A. (2020). Urban heat resilience at the time of global warming: evaluating the impact of the urban parks on outdoor thermal comfort. Environmental Sciences Europe, 32, 1–15. https://doi.10.1186/s12302-020-00393-8 (Crossref)

Armson, D., Stringer, P. & Ennos, A. R. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, 11 (3), 245–255. https://doi.10.1016/j.ufug.2012.05.002 (Crossref)

Baryła, A., Karczmarczyk, A., Bus, A. & Witkowska-Dobrev, J. (2019). Surface temperature analysis of conventional roof and different use forms of the green roof. Scientific Review Engineering and Environmental Sciences (SREES), 28 (4), 632–640. https://doi.10.22630/PNIKS.2019.28.4.57 (Crossref)

Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97 (3), 147–155. https://doi.10.1016/j.landurbplan.2010.05.006 (Crossref)

Chen, X., Xu, Y., Yang, J., Wu, Z. & Zhu, H. (2020). Remote sensing of urban thermal environments within local climate zones: A case study of two high-density subtropical Chinese cities. Urban Climate, 31, 100568. https://doi.10.1016/j.uclim.2019.100568 (Crossref)

Chen, X. L., Zhao, H. M., Li, P. X. & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104 (2), 133–146. https://doi.10.1016/j.rse.2005.11.016 (Crossref)

Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34 (1), 71–73. https://doi.10.1016/0034-4257(90)90085-Z (Crossref)

García-Pardo, K. A., Moreno-Rangel, D., Domínguez-Amarillo, S. & García-Chávez, J. R. (2022). Remote sensing for the assessment of ecosystem services provided by urban vegetation: A review of the methods applied. Urban Forestry & Urban Greening, 74, 127636. https://doi.10.1016/j.ufug.2022.127636 (Crossref)

Hashim, H., Abd Latif, Z. & Adnan, N. A. (2019). Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) Pleiades imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 237–240. https://doi.10.5194/isprs-archives-XLII-4-W16-237-2019 (Crossref)

Head Office of Geodesy and Cartography [GUGiK] (2022). Data available free of charge for download from [accessed: 31.10.2023].

Heidt, V. & Neef, M. (2008). Benefits of urban green space for improving urban climate. In Ecology, planning, and management of urban forests: International perspectives (pp. 84–96). New York, NY: Springer. (Crossref)

Hijmans, R. J., Bivand, R., Forner, K., Ooms, J., Pebesma, E. & Sumner, M. D. (2022). Package ‘terra’. Maintainer: Vienna, Austria.

Irujo, G. P. (2022). IRimage: open source software for processing images from infrared thermal cameras. PeerJ Computer Science, 8, e977. https://doi.10.7717/peerj-cs.977 (Crossref)

Li, Q. & Wang, Z. H. (2018). Large-eddy simulation of the impact of urban trees on momentum and heat fluxes. Agricultural and Forest Meteorology, 255, 44–56. https://doi:10.1016/j.agrformet.2017.07.011 (Crossref)

Masselot, P., Mistry, M., Vanoli, J., Schneider, R., Iungman, T., Garcia-Leon, D., Ciscar, J. C., Feyen, L., Orru, H., Urban, A., Breitner, S., Huber, V., Schneider, A., Samoli, E., Stafoggia, M. de’Donato, F., Rao, S., Armstrong, B., Nieuwenhuijsen, M., …, Aunan, K. (2023). Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe. The Lancet Planetary Health, 7 (4), e271–e281. https://doi.10.1016/S2542-5196(23)00023-2 (Crossref)

Morani, A., Nowak, D. J., Hirabayashi, S. & Calfapietra, C. (2011). How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative. Environmental Pollution, 159 (5), 1040–1047. https://doi.10.1016/j.envpol.2010.11.022 (Crossref)

Nagendra, H. (2002). Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography, 22 (2), 175–186. https://doi.10.1016/S0143-6228(02)00002-4 (Crossref)

Oke, T. R. (1987). Boundary layer climates. London: Routledge.

OpenStreetMap (2023). Background. Retrieved from: [accessed: 31.10.2023].

Peng, J., Dan, Y., Qiao, R., Liu, Y., Dong, J. & Wu, J. (2021). How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sensing of Environment, 252, 112135. https://doi.10.1016/j.rse.2020.112135 (Crossref)

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J. & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20 (9), 503–510. https://doi.10.1016/j.tree.2005.05.011 (Crossref)

R Core Team (2021). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Roussel, J. R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R., Meador, A. S., Bourdon, J. F., Boissieu, F. de & Achim, A. (2020). lidR: an R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, 112061. https://doi.10.1016/j.rse.2020.112061 (Crossref)

Roy, S., Byrne, J. & Pickering, C. (2012). A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry & Urban Greening, 11 (4), 351–363. https://doi.10.1016/j.ufug.2012.06.006 (Crossref)

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9 (7), 671–675. https://doi.10.1038/nmeth.2089 (Crossref)

Schwaab, J., Meier, R., Mussetti, G., Seneviratne, S., Bürgi, C. & Davin, E. L. (2021). The role of urban trees in reducing land surface temperatures in European cities. Nature Communications, 12 (1), 6763. https://doi.10.1038/s41467-021-26768-w (Crossref)

Setiawan, W. & Gawryszewska, B. (2023). Urban garden as a water reservoir in an urban area – a literature review. Scientific Review Engineering and Environmental Sciences (SREES), 32 (3), 221–237. https://doi.10.22630/srees.4960 (Crossref)

Shahidan, M. F., Shariff, M. K., Jones, P., Salleh, E. & Abdullah, A. M. (2010). A comparison of Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving thermal comfort. Landscape and Urban Planning, 97 (3), 168–181. https://doi.10.1016/j.landurbplan.2010.05.008 (Crossref)

Sikorski, P., Gawryszewska, B., Sikorska, D., Chormański, J., Schwerk, A., Jojczyk, A., Ciężkoski, W., Archiciński, P. Łepkowski, M., Dymitryszyn, I., Przybysz, A., Wińska-Krysiak, M., Zajdel, B., Matusiak, J. & Łaszkiewicz, E. (2021). The value of doing nothing – How informal green spaces can provide comparable ecosystem services to cultivated urban parks. Ecosystem Services, 50, 101339. https://doi.10.1016/j.ecoser.2021.101339 (Crossref)

Song, J. & Wang, Z. H. (2015). Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Building and Environment, 94, 558–568. https://doi.10.1016/j.buildenv.2015.10.016 (Crossref)

Statistics Poland (2022). Area and population in the territorial profile in 2022. Warsaw: Statistics Poland. Retrieved from:,4,16.html [accessed: 31.10.2023].

Tengberg, A., Fredholm, S., Eliasson, I., Knez, I., Saltzman, K. & Wetterberg, O. (2012). Cultural ecosystem services provided by landscapes: Assessment of heritage values and identity. Ecosystem Services, 2, 14–26. https://doi.10.1016/j.ecoser.2012.07.006 (Crossref)

Trojanowska, M. (2022). Climate change mitigation and preservation of the cultural heritage – a story of the Municipal Park in Rumia, Poland. Land, 11 (1), 65. https://doi.10.3390/land11010065 (Crossref)

Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., Buchanan, G., Dech, S., Dwyer, J., Herold, M., Koch, L. P., Leimgruber, P., Taubenboeck, H., Wegmann, M., Wikelski, M. & Woodcock, C. (2015). Free and open-access satellite data are key to biodiversity conservation. Biological Conservation, 182, 173–176. https://doi.10.1016/j.biocon.2014.11.048 (Crossref)

Voogt, J. A. & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86 (3), 370–384. https://doi.10.1016/S0034-4257(03)00079-8 (Crossref)

Wang, Z., Yang, Z., Shi, H., Han, F., Liu, Q., Qi, J. & Lu, Y. (2020). Ecosystem health assessment of world natural heritage sites based on remote sensing and field sampling verification: Bayanbulak as case study. Sustainability, 12 (7), 2610. https://doi.10.3390/su12072610 (Crossref)

Weng, Q., Lu, D. & Schubring, J. (2004). Estimation of land surface temperature – vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89 (4), 467–483. https://doi.10.1016/j.rse.2003.11.005 (Crossref)

Xu, C., Qu, J. J., Hao, X., Zhu, Z. & Gutenberg, L. (2020). Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements. International Journal of Applied Earth Observation and Geoinformation, 91, 102156. https://doi.10.1016/j.jag.2020.102156 (Crossref)

Zawojska, E., Szkop, Z., Czajkowski, M. & Żylicz, T. (2016). Economic valuation of ecosystem services provided by the Wilanów Park. A benefit transfer study. Economics and Environment, 59 (4), 11–11. Retrieved from: [accessed: 31.10.2023].



Download data is not yet available.
Recommend Articles