Main Article Content
The carried-out experiment aimed to assess the influence of ash derived from the thermochemical conversion of feathers (AGF) as a soil amendment, and Dactylis glomerata L. as a test plant in aided phytostabilization of soil strongly contaminated by Cu, Cd, Pb and Zn. The influence of AHG on the chemical properties of soil (pH as well as total and CaCl2-extracted heavy metals) as well as the plant yield and concentration of heavy metals in the roots and shoots. The applied soil amendment influenced an increase in the pH values of soil (by 0.4 units) and a reduction in CaCl2-extractable forms of Zn (25%), Cu (23%), Cd (20%) and Pb (12%), as well as total forms of Cu (35%), Zn (35%), Pb (20%) and Cd (17%) in the soil. The plant yield of the shoots of Dactylis glomerata L. following the application of AGF was 31% higher when compared to the control series. The roots of the tested plant in the AGF series contained higher values of the analyzed heavy metals in relation to the shoots, which was especially visible in the case of Pb (more than twice as high) and Cd (37%).
Article Details
Abdulsalam, S., Bajoga, A., & Dala, H. (2020). Determination of some heavy metals concentrations from top soil of metals scrap yards and their corresponding control areas within gombe metropolis, gombe state, nigeria, using atomic absorption spectrometry. Bima Journal of Science and Technology, 4 (02), 31–38.
Adekiya, A. O. (2019). Green manures and poultry feather effects on soil characteristics, growth, yield, and mineral contents of tomato. Scientia Horticulturae, 257, 108721. https://doi.org/10.1016/j.scienta.2019.108721 (Crossref)
Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., Varennes, A. de, Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2009). Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics. Chemosphere, 74 (10), 1292–1300. https://doi.org/10.1016/j.chemosphere.2008.11.063 (Crossref)
Beddows, A. R. (1959). Dactylis glomerata L. The Journal of Ecology, 47 (1), 223–239. https://doi.org/10.2307/2257254 (Crossref)
Bidar, G., Waterlot, C., Verdin, S., Proix, N., Courcot, D., Détriché, S., Fourrier, H., Richard, A., & Douay, F. (2016). Sustainability of an in situ aided phytostabilisation on highly contaminated soils using fly ashes: Effects on the vertical distribution of physicochemical parameters and trace elements. Journal of Environmental Management, 171, 204–216. https://doi.org/10.1016/j.jenvman.2016.01.029 (Crossref)
Cui, X., Mao, P., Sun, S., Huang, R., Fan, Y., Li, Y., Li, Y., Zhuang, P., & Li, Z. (2021). Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity. Chemosphere, 283, 131067. https://doi.org/10.1016/j.chemosphere.2021.131067 (Crossref)
Dalólio, F. S., Silva, J. N. da, Oliveira, A. C. C. de, Tinoco, I. D. F. F., Barbosa, R. C., Oliveira Resende, M. de, Albino, L., & Coelho, S. T. (2017). Poultry litter as biomass energy: a review and future perspectives. Renewable and Sustainable Energy Reviews, 76, 941–949. https://doi.org/10.1016/j.rser.2017.03.104 (Crossref)
Dodd, M., Amponsah, L. O., Grundy, S., & Darko, G. (2023). Human health risk associated with metal exposure at Agbogbloshie e-waste site and the surrounding neighbourhood in Accra, Ghana. Environmental Geochemistry and Health, 45 (7), 4515–4531. https://doi.org/10.1007/s10653-023-01503-0 (Crossref)
Fahimi, A., Bilo, F., Assi, A., Dalipi, R., Federici, S., Guedes, A., Valentim, B., Olgun, H., Ye, G., Bialecka, B., Fiameni, L., Borgese, L., Cathelineau, M., Boiron, M. C., Predeanu, G., & Bontempi, E. (2020). Poultry litter ash characterisation and recovery. Waste Management, 111, 10–21. https://doi.org/10.1016/j.wasman.2020.05.010 (Crossref)
Franco-Hernández, M. O., Vásquez-Murrieta, M. S., Patiño-Siciliano, A., & Dendooven, L. (2010). Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresource Technology, 101 (11), 3864–3869. https://doi.org/10.1016/j.biortech.2010.01.013 (Crossref)
Gusiatin, Z. M., Kumpiene, J., Janiszewska, S., Kasiński, S., Pecio, M., Piec, R., & Radziemska, M. (2020). A mineral by-product from gasification of poultry feathers for removing Cd from highly contaminated synthetic wastewater. Minerals, 10 (12), 1048. https://doi.org/10.3390/min10121048 (Crossref)
Hedayati, A. (2022). Ash transformation in thermochemical conversion of different biomass resources with special focus on phosphorus (doctoral dissertation). Luleå University of Technology. https://www.diva-portal.org/smash/get/diva2:1653111/FULLTEXT01.pdf
Ivanov, V. B., Bystrova, E. I. & Seregin, I. V. (2003). Comparative impacts of heavy metals on root growth as related to their specificity and selectivity. Russian Journal of Plant Physiology, 50, 398–406. https://doi.org/10.1023/A:1023838707715 (Crossref)
Jagadeesan, Y., Meenakshisundaram, S., Raja, K., & Balaiah, A. (2023). Sustainable and efficient-recycling approach of chicken feather waste into liquid protein hydrolysate with biostimulant efficacy on plant, soil fertility and soil microbial consortium: a perspective to promote the circular economy. Process Safety and Environmental Protection, 170, 573-583. https://doi.org/10.1016/j.psep.2022.12.029 (Crossref)
Jeong, Y. K., & Kim, J. S. (2001). A new method for conservation of nitrogen in aerobic composting processes. Bioresource Technology, 79 (2), 129–133. https://doi.org/10.1016/S0960-8524(01)00062-1 (Crossref)
Khanthom, S., Stewart, T. N., & Prapagdee, B. (2021). Potential of a rhizobacterium on removal of heavy metals from aqueous solution and promoting plant root elongation under heavy metal toxic conditions. Environmental Technology & Innovation, 22, 101419. https://doi.org/10.1016/j.eti.2021.101419 (Crossref)
Kwiatkowski, K., Krzysztoforski, J., Bajer, K., & Dudynski, M. (2013). Bioenergy from feathers gasificatione-Efficiency and performance analysis. Biomass Bioenergy, 59, 402–411. https://doi.org/10.1016/j.biombioe.2013.07.013 (Crossref)
Lacalle, R. G., Bernal, M. P., Álvarez-Robles, M. J., & Clemente, R. (2023). Phytostabilization of soils contaminated with As, Cd, Cu, Pb and Zn: Physicochemical, toxicological and biological evaluations. Soil & Environmental Health, 1 (2), 100014. https://doi.org/10.1016/j.seh.2023.100014 (Crossref)
Liu, W., Qin, Y. P., Yang, X. B., & Zhang, G. Y. (2014). Experimental study for impact of volatile matter on spontaneous combustion characteristics of coal. Journal of China Coal Society, 39 (5), 891–896. https://doi:10.13225/j. cnki.jccs.2013.0493
Mohamed, E., Ren, J., Ren, H., Tao, L., & Mala, A. (2023). Stabilization remediation of soil polluted by heavy metals using palygorskite modied with chlorides (preprint). Research Square. https://doi.org/10.21203/rs.3.rs-2462204/v1 (Crossref)
Moon, W. C. (2019). A review on interesting properties of chicken feather as low-cost adsorbent. International Journal of Integrated Engineering, 11 (2), 136-146. https://doi.org/10.30880/ijie.2019.11.01.015 (Crossref)
Pueyo, M., López-Sanchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504 (2), 217–226. https://doi.org/10.1016/j.aca.2003.10.047 (Crossref)
Radziemska, M., Gusiatin, Z. M., Cydzik-Kwiatkowska, A., Cerdà, A., Pecina, V., Bęś, A., Datta, R., Majewski, G., Mazur, Z., Dzięcioł, J., Danish, S., & Brtnicky, M. (2021). Insight into metal immobilization and microbial community structure in soil from a steel disposal dump that was phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere, 272, 129576. https://doi.org/10.1016/j.chemosphere.2021.129576 (Crossref)
Radziemska, M., Gusiatin, Z. M., Kumar, V., & Brtnicky, M. (2022). Co-application of nanosized halloysite and biochar as soil amendments in aided phytostabilization of metal(-oid)s-contaminated soil under different temperature conditions. Chemosphere, 288 (part 1), 132452. https://doi.org/10.1016/j.chemosphere.2021.132452 (Crossref)
Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180 (2), 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016 (Crossref)
Santini, N. S., & Miquelajauregui, Y. (2022). The restoration of degraded lands by local communities and Indigenous peoples. Frontiers in Conservation Science, 3, 873659. https://doi.org/10.3389/fcosc.2022.873659 (Crossref)
Shackira, A. M., & Puthur, J. T. (2019). Phytostabilization of heavy metals: understanding of principles and practices. In S. Srivastava, A. K. Srivastava, & P. Suprasanna (Eds.), Plant-metal interactions (pp. 263–282). Springer. https://doi.org/10.1007/978-3-030-20732-8_13 (Crossref)
Shahrokh, V., Martínez-Martínez, S., Faz, Á., Zornoza, R., & Acosta, J. A. (2023). Efficiency of large-scale aided phytostabilization in a mining pond. Environmental Geochemistry and Health, 45 (7), 4665–4677. https://doi.org/10.1007/s10653-023-01520-z (Crossref)
Shrivastava, M., Khandelwal, A., & Srivastava, S. (2019). Heavy metal hyperaccumulator plants: the resource to understand the extreme adaptations of plants towards heavy metals. In S. Srivastava, A. K. Srivastava & P. Suprasanna (Eds.), Plant-metal interactions (pp. 79–97). https://doi.org/10.1007/978-3-030-20732-8_5 (Crossref)
Solcova, O., Rouskova, M., Sabata, S., Dlaskova, M., Demnerova, K., Bures, J., & Kastanek, F. (2024). Removal of heavy metals from industrial brownfields by hydrolysate from waste chicken feathers in intention of circular bioeconomy. Environmental Advances, 16, 100521. https://doi.org/10.1016/j.envadv.2024.100521 (Crossref)
Sumiahadi, A., & Acar, R. (2018). A review of phytoremediation technology: heavy metals uptake by plants. IOP Conference Series: Earth and Environmental Science, 142, 012023. https://doi.org/10.1088/1755-1315/142/1/012023 (Crossref)
Teodoro, M., Hejcman, M., Vítková, M., Wu, S., & Komárek, M. (2020). Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Science of The Total Environment, 703, 134710. https://doi.org/10.1016/j.scitotenv.2019.134710 (Crossref)
Zhang, Y., Zhan, J., Ma, C., Liu, W., Huang, H., Yu, H., Christie, P., Li, T., & Wu, L. (2024). Root-associated bacterial microbiome shaped by root selective effects benefits phytostabilization by Athyrium wardii (Hook.). Ecotoxicology and Environmental Safety, 269, 115739. https://doi.org/10.1016/j.ecoenv.2023.115739 (Crossref)
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.