Main Article Content
Vineyards provide space for microhabitats and require a very specific way of management. Vineyard vegetation undergoes succession over time, which affects insect communities. The selected vineyards are located in Moravia in the Czech Republic. The vegetation of the vineyards consisted of 48 species of annual dicotyledons, 63 species of perennial dicotyledons, 9 species of annual grasses and 10 species of perennial grasses. During the observation, 9 species of carabid beetles were recorded in the monitored vineyards. The composition of the vegetation in the vineyards changes with the age of the vineyard. Over time, representatives of the perennial dicotyledons, perennial grasses groups increase and representatives of the group annual dicotyledons decrease. The age of the vineyards also changed the carabid beetle community – the species Anchomenus dorsalis was more common in older vineyards. The species Dolichus halensis, Leistus ferrugineus and Platynus assimilis were more frequently recorded in summer and fall in older vineyards. The other species preferred younger vineyards. A higher abundance was recorded in summer and fall, which may be due to a higher food supply and sufficient amount of microhabitats for hibernation.
Article Details
Adamski, Z., Bufo, S. A., Chowanski, S., Falabella, P., Lubawy, J., Marciniak, P., Pacholska-
-Bogalska, J., Salvia, R., Scrano, L., Słocinska, M., Spochacz, M., Szymczak, M., Urbański, A., Walkowiak-Nowicka, K., & Rosiński, G. (2019). Beetles as model organisms in physiological, biomedical and environmental studies – a review. Frontiers in Physiology, 10, 431695. https://doi.org/10.3389/fphys.2019.00319 (Crossref)
Badenhausser, I., & Cordeau, S. (2015). Sown grass strip – a stable habitat for grasshoppers (Orthoptera: Acrididae) in dynamic agricultural landscapes. Agriculture, Ecosystems & Environment, 159, 105–111. https://doi.org/10.1016/j.agee.2012.06.017 (Crossref)
Beaumelle, L., Auriol, A., Grasset, M., Pavy, A., Thiéry, D., & Rusch, A. (2021). Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecological Solutions and Evidence, 2 (3), e12086. https://doi.org/10.1002/2688-8319.12086 (Crossref)
Bianchi, F. J. J. A., Booij, C. J. H., & Tscharntke, T. (2006). Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences, 273 (1595), 1715–1727. https://doi.org/10.1098/rspb.2006.3530 (Crossref)
Biondi, E. (2011). Phytosociology today: methodological and conceptual evolution. Plant Biosystems – an International Journal Dealing with All Aspects of Plant Biology, 145 (1), 19–29. https://doi.org/10.1080/11263504.2011.602748 (Crossref)
Bischoff, A., Pollier, A., Lamarre, E., Salvadori, O., Cortesero, A. M., Le Ralec, A., Tricault, Y., & Jaloux, B. (2016). Effects of spontaneous field margin vegetation and surrounding landscape on Brassica oleracea crop herbivory. Agriculture, Ecosystems & Environment, 223, 135–143. https://doi.org/10.1016/j.agee.2016.02.029 (Crossref)
Blaise, C., Mazzia, C., Bischoff, A., Millon, A., Ponel, P., & Blight, O. (2022). Vegetation increases abundances of ground and canopy arthropods in Mediterranean vineyards. Scientific Reports, 12 (1), 3680. https://doi.org/10.1038/s41598-022-07529-1 (Crossref)
Braak, C. J. F. ter, & Šmilauer, P. (2012). Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power.
Brose, U. (2003). Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity? Oecologia, 135 (3), 407–413. https://doi.org/10.1007/s00442-003-1222-7 (Crossref)
Cahenzli, F., Sigsgaard, L., Daniel, C., Herz, A., Jamar, L. Kelderer, M., Jacobsen, S. K., Kruczyńska, D., Matray, S., Porcel, M., Sekrecka, M., Świergiel, W., Tasin, M., Telfser, J., & Pfiffner, L. (2019). Perennial flower strips for pest control in organic apple orchards – A pan-European study. Agriculture, Ecosystems & Environment, 278, 43–53. https://doi.org/10.1016/j.agee.2019.03.011 (Crossref)
Czech Geological Society (2017). Map of soil types of the Czech Republic, 1:50 000. Czech Geological Society. https://mapy.geology.cz/pudy/
Czech Geological Society (2018). Geological Map of the Czech Republic, 1:50 000. Czech Geological Society. https://mapy.geology.cz/geocr50/
Culek, M. (Ed.) (1996). Biogeografické členění České republiky [Biogeographical division of the Czech Republic]. Enigma.
De Heij, S. E., & Willenborg, C. J. (2020). Connected carabids: network interactions and their impact on biocontrol by carabid beetles. Bioscience, 70 (6), 490–500. https://doi.org/10.1093/biosci/biaa039 (Crossref)
Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H. M., Alves-Silva, E., Fagundes, R., Lange, D., Dáttilo, W., Vilela, A., & Rodriguez-Morales, D. (2016). Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Sociaux, 63, 207–221. https://doi.org/10.1007/s00040-016-0466-2 (Crossref)
Fischer, J., Steinlechner, D., Zehm, A., Poniatowski, D., Fartmann, T., Beckmann, A., & Stettmer, C. (2020). Die Heuschrecken Deutschlands und Nordtirols: Bestimmen – Beobachten – Schützen [The locusts of Germany and North Tyrol: identify – observe – protect]. Quelle & Meyer Verlag.
Gaigher, R., & Samways, M. J. (2010). Surface-active arthropods in organic vineyards, integrated vineyards and natural habitat in the Cape Floristic Region. Journal of Insect Conservation, 14, 595–605. https://doi.org/10.1007/s10841-010-9286-2 (Crossref)
Gardiner, T., Pye, M., Field, R., & Hill, J. (2002). The influence of sward height and vegetation composition in determining the habitat preferences of three Chorthippus species (Orthoptera: Acrididae) in Chelmsford, Essex, UK. Journal of Orthoptera Research, 11 (2), 207–213. (Crossref)
Geldenhuys, M., Gaigher, R., Pryke, J. S., & Samways, M. J. (2021). Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agriculture, Ecosystems and Environment, 307, 107222. https://doi.org/10.1016/j.agee.2020.107222 (Crossref)
Holland, J. M. (2002). Carabid beetles: their ecology, survival and use in agroecosystems. In J. M. Holland (Ed.), The agroecology of carabid beetles (pp. 1–40). Intercept.
Hůrka, K. (1996). Carabidae České a Slovenské republiky [Carabidae of the Czech and Slovak Republics]. Kabourek.
Ingrisch, S., & Köhler, G. (1998). Die Heuschrecken Mitteleuropas [The locusts of Central Europe]. Westarp Wissenschaften.
Isaacs, R., Tuell, J., Fiedler, A., Gardiner, M., & Landis, D. (2009). Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Frontiers in Ecology and the Environment, 7 (4), 196–203. https://doi.org/10.1890/080035 (Crossref)
Kaplan, Z., Danihelka, J., Chrtek, J., Kirschner, J., Kubát, K., Štěch, M. A., & Štěpánek, J. (Eds). (2019). Klíč ke Květeně České republiky [Key to the flora of the Czech Republic]. Academia.
Kotze, D. J., Brandmayr, P., Casale, A., Dauffy-Richard, E., Dekoninck, W., Koivula, M., Lӧvei, G., Mossakowski, D., Noordijk, J., Paarmann, W., Pizzolotto, R., Saska, P., Schwerk, A., Serrano, J., Szyszko, J., Taboada, A., Turin, H., Venn, S., Vermeulen, R., & Zetto, T. (2011). Forty years of carabid beetle research in Europe – From taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys, 100, 55–148. https://doi.org/10.3897/zookeys.100.1523 (Crossref)
Kromp, B. (1999). Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & Environment, 74 (1–3), 187–228. https://doi.org/10.1016/S0167-8809(99)00037-7 (Crossref)
Landis, D. A. (2017). Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18, 1–12. https://doi.org/10.1016/j.baae.2016.07.005 (Crossref)
Porter, L., Khalil, S., Forneck, A., Winter, S., & Griesser, M. (2022). Effects of ground cover management, lndscape elements and local conditions on carabid (Coleoptera: Carabidae) diversity and vine vitality in temperate vineyards. Agronomy, 12 (6), 1328. https://doi.org/10.3390/agronomy12061328 (Crossref)
Ragasová, L., Kopta, T., Winkler, J., Šefrová, H., Sochor, J., & Pokluda, R. (2021). The impact of vineyard inter-row vegetation on plant and insect diversity. European Journal of Horticultural Science, 86 (4), 360–370. https://doi.org/10.17660/eJHS.2021/86.4.3 (Crossref)
Rainio, J., & Niemelä, J. (2003). Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity & Conservation, 12, 487–506. https://doi.org/10.1023/A:1022412617568 (Crossref)
Rocher, L., Melloul, E., Blight, O., & Bischoff, A. (2024). Effect of spontaneous vegetation on beneficial arthropods in Mediterranean vineyards. Agriculture, Ecosystems & Environment, 359, 108740. https://doi.org/10.1016/j.agee.2023.108740 (Crossref)
Rusch, A., Binet, D., Delbac, L., & Thiéry, D. (2016). Local and landscape effects of agricultural intensification on Carabid community structure and weed seed predation in a perennial cropping system. Landscape Ecology, 31, 2163–2174. https://doi.org/10.1007/s10980-016-0390-x (Crossref)
Sáenz-Romo, M. G., Veas-Bernal, A., Martínez-García, H., Campos-Herrera, R., Ibáñez-Pascual, S., Martínez-Villar, E., Pérez-Moreno, I., & Marco-Mancebón, V. S. (2019). Ground cover management in a Mediterranean vineyard: impact on insect abundance and diversity. Agriculture, Ecosystems & Environment, 283, 106571. https://doi.org/10.1016/j.agee.2019.106571 (Crossref)
Saunders, M. E. (2018). Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agricultural & Forest Entomology, 20 (2), 298–300. https://doi.org/10.1111/afe.12248 (Crossref)
Schaffers, A. P., Raemakers, I. P., Sýkora, K. V., & Braak, C. ter (2008). Arthropod assemblages are best predicted by plant species composition. Ecology, 89 (3), 782–794. https://doi.org/10.1890/07-0361.1 (Crossref)
Taranto, L., Rodrigues, I., Santos, S., Villa, M., & Pereira, J. A. (2023). Intermediate fragmentation surrounding vineyards favours the Coleoptera community within the crop. Agricultural and Forest Entomology, 25 (1), 9–19. https://doi.org/10.1111/afe.12527 (Crossref)
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8 (8), 857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (Crossref)
Uzman, D., Entling, M. H., Leyer, I., & Reineke, A. (2020). Mutual and opposing responses of carabid beetles and predatory wasps to local and landscape factors in vineyards. Insects, 11 (11), 746. https://doi.org/10.3390/insects11110746 (Crossref)
Winkler, J., Ježová, M., Punčochář, R., Hurajová, E., Martínez Barroso, P., Kopta, T., Semerádová, D., & Vaverková, M. D. (2023). Fire hazard: undesirable ecosystem function of orchard vegetation. Fire, 6 (1), 25. https://doi.org/10.3390/fire6010025 (Crossref)
Winkler, K. J., Viers, J. H., & Nicholas, K. A. (2017). Assessing Ecosystem Services and Multifunctionality for Vineyard Systems. Frontiers in Environmental Science, 5, 15. https://doi.org/10.3389/fenvs.2017.00015 (Crossref)
Winter, S., Bauer, T., Strauss, P., Kratschmer, S., Paredes, D., Popescu, D., Landa, B., Guzmán, G., Gómez, J. A., Guernion, M., Zaller, J. G., & Batáry, P. (2018). Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: a meta-analysis. Journal of Applied Ecology, 55 (5), 2484–2495. https://doi.org/10.1111/1365-2664.13124 (Crossref)
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.