Potential of using greenery to reduce overheating of buildings in Polish climate conditions

Main Article Content

W. Skorzewski


Keywords : greenery, low-energy architecture, passive buildings, solar radiation, overheating
Abstract

The issue of overheating the buildings gives great opportunities for the use of greenery, that can affect the amount of passive solar gains through the glazed parts of façades. Restricting the access of the sunlight to the façades helps to reduce the energy usage for the cooling purposes, but, on the other hand, may cause reduction of solar gains in winter. The aim of the research is to determine the potential of using greenery to reduce energy demand of buildings by achieving the optimal balance between solar energy gains and losses in polish climate conditions.

Article Details

How to Cite
Skorzewski, W. (2019). Potential of using greenery to reduce overheating of buildings in Polish climate conditions. Scientific Review Engineering and Environmental Sciences (SREES), 28(4), 610–618. https://doi.org/10.22630/PNIKS.2019.28.4.56
References

Amado, M. & Poggi, F. (2012). Towards solar urban planning: A new step for better energy performance. Energy Procedia, 30, 1261-1273. (Crossref)

Amado, M. & Poggi, F. (2014). Solar urban planning: a parametric approach. Energy Procedia, 48, 1539-1548. (Crossref)

Balcomb, J.D. (1992). Passive Solar Buildings. Boston, MA: MIT Press.

Cheng, C., Cheung, K. & Chu, L. (2010). Thermal performance of a vegetated cladding system on façade walls. Building and Environment, 45(8), 1779-1787. (Crossref)

Chwieduk, D. (2006). Modelowanie i analiza pozyskiwania oraz konwersji termicznej energii promieniowania słonecznego w budynku [Modelling and analysis of acquisition and conversion of solar thermal energy in buildings]. Warszawa: IPPT PAN.

Chwieduk, D. (2014). Solar energy in buildings: thermal balance for efficient heating and cooling. London: Oxford Inc.

Esch, M.M.E., van, Looman, R.H.J. & de Bruin-Hordijk, G.J. (2012). The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct passive solar heating strategies. Energy and Buildings, 47, 189-200. (Crossref)

Feist, W., Munzenberg, U. & Thumulla, J. (2009). Podstawy budownictwa pasywnego [Basics of passive house construction]. Gdańsk: Polski Instytut Budownictwa Pasywnego.

Grzymała, Z. (2016). Eco-cities – case studies and development perspectives. Research Papers of Wrocław University of Economics, 432, 61-66.

Ip, K., Lam, M. & Miller, A. (2010). Shading performance of a vertical deciduous climbing plant canopy. Building and Environment, 45(1), 81-88. (Crossref)

Jim, C.Y. & He, H. (2011). Estimating heat flux transmission of vertical greenery ecosystem. Ecological Engineering, 37(8), 1112-1122. (Crossref)

Kontoleon, K.J. & Eumorfopoulou, E.A. (2010). The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Building and Environment, 45(5), 1287-1303. (Crossref)

Ministerstwo Inwestycji i Rozwoju [Ministry of Investment and Development] (2019). Typowe lata meteorologiczne i statystyczne dane klimatyczne dla obszaru Polski do obliczeń energetycznych budynków [Typical meteorological years and statistical climate data for the area of Poland for energy calculations of buildings]. Retrieved from: https:// www.dane.gov.pl/dataset/797?page=1& per_ page=50& sort=-verifi ed

Morganti, M., Salvati, A., Coch, H. & Cecere, C. (2017). Urban morphology indicators for solar energy analysis. Energy Procedia, 134, 807-814. (Crossref)

Pérez, G., Rincón, L., Vila, A., González, J.M. & Cabeza, L.F. (2010). Behaviour of green façades in Mediterranean continental climate. Energy Conversion Management, 52(4), 1861-1867. (Crossref)

Sarralde, J.J., Quinn, D.J., Wiesmann, D. & Steemers, K. (2015). Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London. Renewable Energy, 73, 10-17. (Crossref)

Sobczyk, W. & Bracha, K. (2014). Słoneczne budownictwo pasywne jako alternatywa dla zużycia surowców kopalnych [Passive solar houses as an alternative to the consumption of fossil raw materials]. Edukacja – Technika – Informatyka, 1(5), 335-340.

Stangel, M. (2013). Kształtowanie współczesnych obszarów miejskich w kontekście zrównoważonego rozwoju [Improvement of modern urban areas in the contextof sustainable development]. Gliwice: Wydawnictwo Politechniki Śląskiej.

Stec, W.J., Paassen, A.H.C. van & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings, 37(5), 419-427. (Crossref)

Stromann-Andersen, J. & Sattrup, P.A. (2011). The urban canyon and building energy use: urban density versus daylight and passive solar gains. Energy and Buildings, 43(8), 2011-2020. (Crossref)

Tong, S., Wong, N.H., Jusuf, S.K., Tan, C.L., Wong, H.F., Ignatius, M. & Tan, E. (2018). Study on correlation between air temperature and urban morphology parameters in built environment in northern China. Building and Environment, 127, 239-249. (Crossref)

Wong, N.H., Jusuf, S.K., Syafii, N.I., Chen, Y., Hajadi, N., Sathyanarayanan, H. & Manickavasagam, Y.V. (2011). Evaluation of the impact of the surrounding urban morphology on building energy consumption. Solar Energy, 85(1), 57-71. (Crossref)

Zhou, Y., Zhuang, Z., Yang, F., Yu, Y. & Xie, X. (2017). Urban morphology on heat island and building energy consumption. Procedia Engineering, 205, 2401-2406. (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles