Surface temperature analysis of conventional roof and different use forms of the green roof

Main Article Content

A. Baryla
A. Karczmarczyk
A. Bus
J. Witkowska-Dobrev


Keywords : green roof, conventional roof, termovision, surface temperature
Abstract

Surface temperature analysis of con-ventional roof and different use forms of the green roof. Increasing urban populations raises a number of problems and risks that are strengthened by observed and projected cli-mate change. An increase in green areas (so--called green infrastructure) has turned out to be an effective means of lowering tempera-ture in the city. Green roofs can be one of the possible measures leading to achieving this aim. The aim of the study was the analysis of temperature changes of different roof surfac-es (conventional roof, board, intensive roof substrate without plant cover, substrate cov-ered with plants (shrubs). Studies on compar-ing the temperature between a conventional roof and green roofs were carried out in the period from April to September 2015 on the roof of the building of the Faculty of Mod-ern Languages, University of Warsaw. The measurement was performed using the FLIR SC620 thermal imaging system. As a result of the tests, it was found that in the summer months the differences between the tempera-ture of the green roof and the conventional roof amounted to a maximum of 31.3°C. The obtained results showed that the roof with vegetation can signifi cantly contribute to the mitigation of the urban heat island phenom-enon in urban areas during summer periods.

Article Details

How to Cite
Baryla, A., Karczmarczyk, A., Bus, A., & Witkowska-Dobrev, J. (2019). Surface temperature analysis of conventional roof and different use forms of the green roof. Scientific Review Engineering and Environmental Sciences (SREES), 28(4), 632–640. https://doi.org/10.22630/PNIKS.2019.28.4.57
References

Baryła, A., Gnatowski, T., Karczmarczyk, A. & Szatyłowicz, J. (2019). Changes in temperature and moisture content of an extensivetype green roof. Sustainability, 11(9), 2498. https://doi.org/10.3390/su11092498

Bevilacqua, P., Mazzeo, D., Bruno, R. & Arcuri, N. (2017). Surface temperature analysis of an extensive green roof for the mitigation of urban heat island in southern mediterranean climate. Energy and Buildings, 150, 318-327.

Brenneisen, S. (2006). Space for urban wildlife: designing green roofs as habitats in Switzerland. Urban Habitats, 4, 27-36.

Burszta-Adamiak, E., Fudali, E., Łomotowski, J. & Kolasińska, K. (2019). A pilot study on improve the functioning of extensive green roofs in city centers using mosses. Scientific Review – Engineering and Environmental Sciences, 28(1), 118-130. https://doi.org/10.22630/PNIKS.2019.28.1.11

Carter, T. & Keeler, A. (2008). Life-cycle cost–benefit analysis of extensive vegetated roof systems. Journal of Environmental Management, 87(3), 350-363. https://doi. org/10.1016/j.jenvman.2007.01.024

Castleton, H.F., Stovin, V., Beck, S.B.M. & Davison, J.B. (2010). Green roofs; building energy savings and the potential for retrofit. Energy and Buildings, 42(10), 1582-1591. https://doi.org/10.1016/j.enbuild.2010.05.004

Czemiel Berndtsson, J. (2010). Green roof performance towards management of runoff water quantity and quality: a review. Ecological Engineering, 36(4), 351-360. org/10.1016/j.ecoleng.2009.12.014

Dohojda, M., Podawca, K. & Witkowska-Dobrev, J. (2018). Termomodernization analyses of terraces located above existing apartments. E3S Web of Conferences, 44, 00032. https://doi.org/10.1051/e3sconf/20184400032

Dunnet, N. & Kingsbury, N. (2004). Planting green roofs and living walls. Portland, Oregon: Timber Press.

Fang, C.F. (2008). Evaluating the thermal reduction effect of plant layers on rooftops. Energy and Buildings, 40(6), 1048-1052. https://doi. org/10.1016/j.enbuild.2007.06.007

Forschungsanstalt Landschaftsentwicklung Landschaftsbau [FLL] (2008). Richtlinie für die Planung, Ausführung und Pfl ege von Dachbegrünungen (Dachbegrünungsrichtlinie) [Guidelines for the planning, construction and maintenance of green roofing (Green roof policy)]. Bonn: Forschungsanstalt Landschaftsentwicklung Landschaftsbau.

Heusinger, J. & Weber, S. (2015). Comparative microclimate and dewfall measurements at an urban green roof versus bitumen roof. Building and Environment, 92, 713-723.

Jelinkova, V., Dohnal, M. & Picek, T. (2015). A green roof segment for monitoring the hydrological and thermal behaviour of anthropogenic soil systems. Soil and Water Research, 10(4), 262-270.

Jim, C.Y. & Peng, L.L.H. (2012). Weather effect on thermal and energy performance of an extensive tropical green roof. Urban Forestry and Urban Greening, 11(1), 73-85. https://doi.org/10.1016/j.ufug.2011.10.001

Karachaliou, P., Santamouris, M. & Pangalou, H. (2016). Experimental and numerical analysis of the energy performance of a large scale intensive green roof system installed on an office building in Athens. Energy and Buildings, 114, 256-264. https://doi.org/10.1016/j.enbuild.2015.04.055

Karczmarczyk, A., Baryła, A. & Kożuchowski, P. (2017). Design and Development of Low P-Emission Substrate for the Protection of Urban Water Bodies Collecting Green Roof Runoff. Sustainability, 9(10), 1795. https:// doi.org/10.3390/su9101795

Köhler, M., Schmidt, M., Grimme, F.W., Laar, M., de A. Paiva, V.L. & Tavares, S. (2002). Green roofs in temperate climates and in the hot-humid tropics far beyond the aesthetics. Environmental Management and Health, 13(4), 382-391. https://doi.org/10.1108/09566160210439297

Li, J., Wai, O.W.H., Li, Y.S., Zhan, J., Ho, Y.A., Li, J. & Lam, E. (2010). Effect of green roof on ambient CO2 concentration. Building and Environment, 45(12), 2644-2651.org/10.1016/j.buildenv.2010.05.025 https://doi.org/10.1016/j.buildenv.2010.05.025

Lin, B.S., Yu, C.C., Su, A.T. & Lin, Y.J. (2013). Impact of climatic conditions on the thermal effectiveness of an extensive green roof. Building and Environment, 67, 26-33. https://doi.org/10.1016/j.buildenv.2013.04.026

Mularz, S. & Wróbel, A. (2003). Badanie rozkładu temperatury powierzchni terenu z wykorzystaniem zobrazowań termowizyjnych [Investigation of temperature distribution on a terrain surface using thermovision imaging]. Archives of Photogrammetry, Cartography and Remote Sensing [Archiwa Fotogrametrii, Kartografii i Teledetekcji], 13b, 441-450.

Nawaz, R., McDonald, A. & Postoyko, S. (2015). Hydrological performance of a full-scale extensive green roof located in a temperate climate. Ecological Engineering, 82, 66-80. https://doi.org/10.1016/j.ecoleng.2014.11.061

Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R.R., Doshi, H., Dunnett, N., Gaffin, S., Köhler, M., Liu, K.K.Y. & Rowe, B. (2007). Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience, 57(10), 823. https://doi. org/10.1641/B571005

Pęczkowski, G., Kowalczyk, T., Szawernoga, K., Orzepowski, W., Żmuda, R. & Pokładek, R. (2018). Hydrological performance and runoff water quality of experimental green roofs. Water, 10(9), 1185. https://doi.org/10.3390/w10091185

Solcerova, A., Ven, F. van de, Wang, M., Rijsdijk, M. & Giesen, N. van de (2017). Do green roofs cool the air? Building and Environment, 111, 249-255.

Stovin, V., Vesuviano, G. & Kasmin, H. (2012). The hydrological performance of a green roof test bed under UK climatic conditions. Journal of Hydrology, 414-415, 148-161.

Susca, T. (2019). Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 162, 106273. https://doi.org/10.1016/j.buildenv.2019.106273

Takakura, T., Kitade, S. & Goto, E. (2000). Cooling effect of greenery cover over a building. Energy and Buildings, 31(1), 1-6. https://doi. org/10.1016/S0378-7788(98)00063-2

Takebayashi, H. & Moriyama, M. (2007). Surface heat budget on green roof and high refl ection roof for mitigation of urban heat island. Building and Environment, 42(8), 2971-2979. https://doi.org/10.1016/j.buildenv.2006.06.017

Taleghani, M., Tenpierik, A., van den Dobbelsteen, D.J. & Sailor (2014). Heat mitigation strategies in winter and summer: field measurements in temperate climates. Building and Environment, 81, 309-319. https://doi.org/10.1016/j.buildenv.2014.07.010

Teemusk, A. & Mander, Ü. (2009). Green roof potential to reduce temperature fluctuations of a roof membrane: a case study from Estonia. Building and Environment, 44(3), 643-650.

Theodosiou, T.G. (2003). Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and Building, 35(9), 909-917. https://doi.org/10.1016/S0378-7788(03)00023-9

Van Renterghem, T. & Botteldooren, D. (2009). Reducing the acoustical facade load from road traffic with green roofs. Building and Environment, 44(5), 1081-1087. https://doi.org/10.1016/j.buildenv.2008.07.013

Walawender, J.P. (2015). Wpływ dachów zielonych na warunki klimatyczne w mieście [Impact of green roofs on the climatic conditions in cities]. Retrieved from: http://zielonainfrastruktura.pl/wplyw-dachow-zielonych-nawarunki-klimatyczne-w-miescie/

Wong, N.H., Chen, Y., Ong, C.L. & Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 38(2), 261-270. https://doi.org/10.1016/S0360-1323(02)00066-5

Yang, J., Yu, Q. & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmospheric Environment, 42(31), 7266-7273.

Statistics

Downloads

Download data is not yet available.