The use of ordinary kriging and inverse distance weighted interpolation to assess the odour impact of a poultry farming

Main Article Content

Izabela Sówka
Marcin Pawnuk
Agnieszka Grzelka
Anna Pielichowska


Keywords : odour nuisance, field olfactometry, GIS, kriging, IDW
Abstract
The aim of the study was to determine the usefulness of spatial data interpolation methods in analyses of the odour impact of animal husbandry facilities. The interpolation methods of data obtained from measurements using the field olfactometry technique were the ordinary kriging method (OK) and the inverse distance weighted method (IDW). The quality of the analyses that have been obtained indicates the potentially better use of the OK method in the presentation of spatial odour concentration distributions.

Article Details

How to Cite
Sówka, I., Pawnuk, M., Grzelka, A., & Pielichowska, A. (2020). The use of ordinary kriging and inverse distance weighted interpolation to assess the odour impact of a poultry farming. Scientific Review Engineering and Environmental Sciences (SREES), 29(1), 17–26. https://doi.org/10.22630/PNIKS.2020.29.1.2
References

Borkowski, A.Sz. & Kwiatkowska-Malina, J. (2017). Geostatistical modelling as an assessment tool of soil pollution based on deposition from atmospheric air. Geoscience Journal, 21(4), 645-653. https://www.doi.org/10.1007/s12303-017-0005-9

Commission Implementing Decision (EU) 2017/302 of 15 February 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the intensive rearing of poultry or pigs (notifi ed under document C(2017) 688). OJ L 43/231 of 21.02.2017.

Ding, Q., Wang, Y. & Zhuang, D. (2018). Comparison of the commo spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management, 212, 23-31. https://www.doi.org/10.1016/j.jenvman.2018.01.074

Environmental Systems Research Institute [ESRI] (2016). How Kriging Works. Retriev from: https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-krigingworks.htm [accessed: 08.03.2019].

Gębicki, J., Byliński, H. & Namieśnik, J. (2016). Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environmental Monitoring and Assessment, 188(1), 32, 1-15. https://www.doi.org/10.1007/s10661-015-5024-2

Grzelka, A., Sówka, I. & Miller, U. (2018). Metody oceny emisji odorów z obiektów gospodarki hodowlanej. Inżynieria Ekologiczna, 19(2), 56-64. https://www.doi.org/10.12912/23920629/86054

Huisman, O. & By, R.A. de (2009). Principles of geographic information system, an introductory textbook. 4th edn. Enschede: The International Institute for Geo-Information Science and Earth Observation.

Korczyński, M., Opaliński, S., Sówka, I., Szołtysik, M., Cwynar, P. & Kołacz, R. (2011). Odour nuisance at pig farm. In Animal hygiene and sustainable livestock production. In Proceedings of the 15th International Congress of the International Society for Animal Hygiene, Vienna, 3-7.07.2011 (pp. 1139-1141). Brno: Tribun EU.

Kośmider, J., Mazur-Chrzanowska, B. & Wyszyński, B. (2012). Odory [Odours]. Warszawa: Wydawnictwo Naukowe PWN.

Ministerstwo Środowiska (2019). Projekt z dnia 28 marca 2019 r. Ustawa o minimalnej odległości dla planowanego przedsięwzięcia sektora rolnictwa, którego funkcjonowanie może wiązać się z ryzykiem powstawania uciążliwości zapachowej [A draft act on the minimum distance for planned projects of the agricultural sector, the functioning of which may be associated with the risk of odour nuisance]. Retrieved from: https://legislacja.rcl.gov.pl/docs//2/12321413/12579301 /12579302/dokument387162.pdf [accessed: 21.08.2019].

Núñez-Alonso, D., Pérez-Arribas, L.V., Manzoor, S. & Cáceres, J.O. (2019). Statistical tools for air pollution assessment: multivariate and spatial analysis studies in the Madrid region. Journal of Analytical Methods in Chemistry, 9, 1-9. https://www.doi.org/10.1155/2019/9753927

PN-EN 13725:2007. Jakość powietrza. Oznaczanie stężenia zapachowego metodą olfaktometrii dynamicznej [Air quality. Determination of odour concentration by dynamic olfactometry].

Sówka, I., Grzelka, A., Bezyk, Y. & Miller, U. (2017a). GIS-based modeling of odour emitted from the waste processing plant: case study. E3S Web of Conferencess, 17, 1-8. https://www.doi.org/10.1051/e3sconf/20171700085

Sówka, I., Pachurka, Ł., Bezyk, Y., Grzelka, A. & Miller, U. (2017b). Application of fi eld studies and geostatistical methods in assessment of odour nuisance based on selected examples from municipal, industrial and agricultural environments. Ochrona Środowiska i Zasobów Naturalnych, 28(2), 16-21.

Wong, D.W., Yuan, L. & Perlin, S.A. (2004) Comparison of spatial interpolation method for the estimation of air quality data. Journal of Exposure Analysis and Environmental Epidemiology, 14(5), 404-415.

Xie, X., Semanjski, I., Gautama, S., Tsiligianni, E., Deligiannis, N., Rajan, R.T., Pasveer, F. & Philips, W. (2017). A review of urban air pollution monitoring and Exposure Assessment Methods. International Journal of Geo-Information, 6(12), 389. https://www.doi.org/10.3390/ijgi6120389

Zhu, X. (2016). GIS for Environmental Applications: A practical approach. London: Routledge.

Statistics

Downloads

Download data is not yet available.
Recommend Articles