Main Article Content
Article Details
AREN 3050 (2005). Environmental Systems for Buildings I.
ASHRAE 55-1992R. Thermal environmental conditions for human occupancy.
ASHRAE 55-2004. Thermal environmental conditions for human occupancy.
Alajmi, A.F., Baddar, F.A. & Bourisli, R.I. (2015). Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system – a case study. Building and Environment, 85, 153-159. https://doi.org/10.1016/j.buildenv.2014.11.027
Assimakopoulos, M.N. & Katavoutas, G. (2017). Thermal comfort conditions at the platforms of the Athens Metro. Procedia Engineering, 180, 925-931. https://doi.org/10.1016/j.proeng.2017.04.252
Bean, R. (2012). Thermal comfort and indoor air quality [Online slides]. Retieved from www.healthyheating.com/Thermal-comfort-andindoor-air-quality/Thermal-comfort-and-indoor-air-quality.pdf
Boutet, S.T. (1987). Controlling air movement. New York: McGraw Hill Book Company.
Bridger, R.S. (1995). Introduction to ergonomics. Boca Raton: CRC Press. https://doi.org/10.4324/9780203426135
BS EN ISO 7730:2005. Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
Chaiyapinunt, S., Mangkornsaksit, K. & Phueakphongsuriya, B. (2004). Development of cooling load temperature differential values for building envelopes in Thailand. Journal of the Chinese Institute of Engineers, 27(5), 677-688. https://doi.org/10.1080/02533839.2004.9670915
Epstein, Y. & Moran, D.S. (2006). Thermal comfort and the heat stress indices. Industrial Health, 44, 388-398. https://doi.org/10.2486/indhealth.44.388
European Agency for Safety and Health at Work [EU-OSHA] (2012). Annual Report. Bilbao: European Agency for Safety and Health. https://doi.org/10.2802/51178
Health and Safety Executive [HSE] (2017). Workrelated stress, depression or anxiety statistics in Great Britain 2017. Bootle: Health and Safety Executive.
Höppe, P. (2002). Different aspects of assessing indoor and outdoor thermal comfort. Energy and Buildings, 34(6), 661-665. https://doi.org/10.1016/S0378-7788(02)00017-8
Humphreys, M.A. & Fergus Nicol, J. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, 34(6), 667-684. https://doi.org/10.1016/S0378-7788(02)00018-X
ISO 7730:2005. Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
Jenkins, K., Gilbey, M., Hall, J., Glenis, V. & Kilsby, C. (2014). Implications of climate change for thermal discomfort on underground railways. Transportation Research Part D: Transport and Environment, 30, 1-9. https://doi.org/10.1016/j.trd.2014.05.002
Karyono, T. (2015). Predicting comfort temperature in Indonesia, an initial step to reduce cooling energy consumption. Buildings, 5(3), 802-813. https://doi.org/10.3390/buildings5030802
Kurazumi, Y., Tsuchikawa, T., Kondo, E., Ishii, J., Fukagawa, K., Yamato, Y., Ando, Y., Matsubara, S. & Horikoshi, T. (2012). Thermal comfort zone in outdoor environment. Journal of Human and Living Environment, 19(2), 115-127. https://doi.org/10.24538/jhesj.19.2_115
Lan, L., Wargocki, P. & Lian, Z. (2011). Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, 43(5), 1057-1062. https://doi.org/10.1016/j.enbuild.2010.09.001
Latha, P.K., Darshana, Y. & Venugopal, V. (2015). Role of building material in thermal comfort in tropical climates – a review. Journal of Building Engineering, 3, 104-113. https://doi.org/10.1016/j.jobe.2015.06.003
Li, Q., Yoshino, H., Mochida, A., Lei, B., Meng, Q., Zhao, L. & Lun, Y. (2009). CFD study of the thermal environment in an air-conditioned train station building. Building and Environment, 44(7), 1452-1465. https://doi.org/10.1016/j.buildenv.2008.08.010
Lippsmeier, I. (1997). Bangunan Tropis [Tropical buildings]. Jakarta: Penerbis Erlangga.
Mochida, A., Yoshino, H., Takeda, T., Kakegawa, T. & Miyauchi, S. (2005). Methods for controlling airfl ow in and around a building under cross-ventilation to improve indoor thermal comfort. Journal of Wind Engineering and Industrial Aerodynamics, 93(6), 437-449. https://doi.org/10.1016/j.jweia.2005.02.003
Parsons, K. (2014). Human thermal environments: The effects of hot, moderate, and cold environments on human health, comfort, and performance. 3rd ed. Boca Raton: CRC Press. https://doi.org/10.1201/b16750
Piasecki, M., Fedorczak-Cisak, M., Furtak, M. & Biskupski, J. (2019). Experimental confirmation of the reliability of fanger’s thermal comfort model – case study of a near-zero energy building (NZEB) offi ce building. Sustainability (Switzerland), 11(9), 2461. https://doi.org/10.3390/su11092461
Ponni, M. & Baskar, R. (2015). Comparative study of different types of roof and indoor temperatures in tropical climate. International Journal of Engineering and Technology, 7(2), 530-536.
Pourshaghaghy, A. & Omidvari, M. (2012). Examination of thermal comfort in a hospital using PMV-PPD model. Applied Ergonomics, 43(6), 1089-1095. https://doi.org/10.1016/j.apergo.2012.03.010
Purnomo, H. & Rizal (2000). Pengaruh Kelembaban,Temperatur Udara dan Beban Kerja terhadap Kondisi Faal Tubuh Manusia [Effects of humidity, air temperature and workload on the physiological condition of the human body]. Logika, 4(5), 35-47.
Maru, R. & Ahmad, S., Malaysia, B., Malaysia (2014). Daytime temperature trend analysis in the City of Jakarta, Indonesia. World Applied Sciences Journal, 32(9), 1808-1813.
Rural Chemical Industries (Aust) Pty Ltd (n.d.). Country: Indonesia temperature & relative humidity range. Retrieved form https://www.heatstress.info/Portals/38/TEMPIND(updated).pdf
Seppänen, O., Fisk, W.J. & Faulkner, D. (2005). Control of temperature for health and productivity in offices. Berkeley: Lawrence Berkeley National Laboratory.
Setaih, K., Hamza, N., Mohammed, M.A., Dudek, S. & Townshend, T. (2014). CFD modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid climates. Journal of Information Technology in Construction, 19, 248-269.
Simion, M., Socaciu, L. & Unguresan, P. (2016). Factors which influence the thermal comfort inside of vehicles. Energy Procedia, 85, 472480. https://doi.org/10.1016/j.egypro.2015.
SNI 6390:2011. Konservasi energi sistem tata udara pada bangunan gedung [Energy saving in air conditioning of buildings].
Stanton, N.A., Hedge, A., Brookhuis, K., Salas, E. & Hendrick, H.W. (Eds.) (2004). Handbook of human factors and ergonomics methods. Boca Raton: CRC Press. https://doi.org/10.1201/9780203489925
Stavrakakis, G.M., Zervas, P.L., Sarimveis, H. & Markatos, N.C. (2010). Development of a computational tool to quantify architectural-design effects on thermal comfort in naturally ventilated rural houses. Building and Environment, 45(1), 65-80. https://doi.org/10.1016/j.buildenv.2009.05.006
Sugiono, S., Swara, S.E., Wijanarko, W. & Sulistyarini, D.H. (2017). Investigating the impact of ornamental plants correlated with indoor thermal comfort and eco-energy. International Review of Civil Engineering, 8(5), 221-226. https://doi.org/10.15866/irece.v8i5.12703
Uemoto, K.L., Sato, N.M.N. & John, V.M. (2010). Estimating thermal performance of cool colored paints. Energy and Buildings, 42(1), 17-22. https://doi.org/10.1016/j.enbuild.2009.07.026
Downloads
- Hary Sudjono, Hary Pratikto, Hary Surachman, Sugiono Sugiono, The product strength analysis of woven bag made from recycled mineral water plastic cups based on the polypropylene content , Scientific Review Engineering and Environmental Sciences (SREES): Vol. 29 No. 2 (2020)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.