Relation between CO2 emissions and crude oil combustion in Iraq

Main Article Content

Ahmed S. Hassan
Hasan M. Azeez

Keywords : CO2 emission, crude oil, CO2 concentration, Iraq
Fossil fuel is the main source for CO2 emissions that causes global warming. This fact is the starting point for this paper, that consider on three different sources of data: crude oil used to calculate CO2 emissions for Iraq for the period from 1980 to 2018; annual data of total CO2 emissions available from the Carbon Dioxide Information Analysis Center (CDIAC) for Iraq and the world for the period from 1980 to 2014; and CO2 concentrations for Iraq for the period from 2002 to 2006 and for the world for the period from 1980 to 2018. The result is a multifaceted according to the dataset sources. Carbon dioxide emissions calculated from Iraqi crude oil was increased from 1.29 Mt in 2012 to 1.97 Mt in 2018. The world and Iraq CO2 emissions with different slop of average line that was 0.5 for world, 0.003 for Iraq, while increased exponential function from 2008 to 2014 to reach 36 and 0.17 Mt, respectively. The highest value of Iraqi CO2 concentration was 403 ppm in 2016, while the global CO2 concentrations slowly increased with slop line equal to 1.75 ppm per year, from minimum value of 338.6 ppm was in 1980, while maximum value of 407.05 ppm was in 2018, that’s mean no decreased in CO2 concentration unless emissions addressed.

Article Details

How to Cite
Hassan, A. S., & Azeez, H. M. (2021). Relation between CO2 emissions and crude oil combustion in Iraq. Scientific Review Engineering and Environmental Studies (SREES), 30(3), 379–387.

Abdulfattah, I.S., Rajab, J.M., Al-Salihi, A.M., Suliman, A. & Lim, H.S. (2020). Observed vertical distribution of tropospheric carbon monoxide during 2012 over Iraq. Scientific Review – Engineering and Environmental Sciences, 29(2), 184-195.

Al-rukabie, J.S.A., Hassan, A.S. & Kadhum, J.H. (2020). Empirical analysis of CO2 emission using EKC model in Iraq. International Journal of Advanced Science and Technology, 29(3), 557-564.

Andres, R.J., Boden, T.A. & Higdon, D. (2014). A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B: Chemical and Physical Meteorology, 66(1), 23616.

Andres, R.J., Boden, T.A., Bréon, F.M., Ciais, P., Davis, S., Erickson, D., Gregg, J.S., Jacobson, A., Marland, G., Miller, J., Oda, T., Olivier, J.G.J., Raupach, M.R. & Treanton, K. (2012). A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9(5), 1845-1871.

Aumont, O. (2016). Étude des cycles biogéochimiques marins au moyen de la modélisation [Study on marine geochemical cycles using modelling]. Paris: Sorbonne University.

Blanco, G., Gerlagh, R., Suh, S., Barrett, J., Coninck, H.C. de, Morejon, C.F.D., Mathur, R., Nakicenovic, N., Ahenkorah, A.O., Pan, J., Pathak, H., Rice, J., Richels, R., Smith, S.J., Stern, D.I., Toth, F.L. & Zhou, P. (2014). Drivers, trends and mitigation. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 351-411). Cambridge: Cambridge University Press.

Boden, T., Andres, R. & Marland, G. (2017). Global, Regional, and National Fossil-Fuel CO2 Emissions (1751–2014) (V. 2017).

Florides, G.A. & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences. Environment International, 35(2), 390-401.

Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Hauck, J., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D.C.E., Canadell, J.G., Ciais, P., Jackson, R.B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L.P., Currie, K.I., Feely, R.A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D.S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A.K., Joetzjer, E., Kaplan, J.O., Kato, E., Klein Goldewijk, K., Korsbakken, J.I., Landschützer, P., Lauvset, S. K., Lefčvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P.C., Melton, J.R., Metzl, N., Munro, D. R., Nabel, J.E.M.S., Nakaoka, S.-I., Neill, C., Omar, A.M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P.P., Tian, H., Tilbrook, B., Tubiello, F.N., Werf, G.R. van der, Wiltshire, A.J. & Zaehle, S. (2019). Global carbon budget 2019. Earth System Science Data, 11(4), 1783-1838.

Hassan, A.S. & Zaki, K.N. (2018). Decadal Analysis of Carbon Dioxide Emissions from Different State of Fossil Fuels in Iraq. Indian Journal of Public Health Research & Development, 9(12), 865-868.

Munn, C.B. (2019). Marine microbiology: ecology & applications. Boca Raton: CRC Press.

Rajab, J.M., Hassan, A.S., Kadhum, J.H., Al-Salihi, A.M. & San Lim, H. (2020). Analysis of tropospheric NO2 over Iraq using OMI satellite measurements. Scientific Review – Engineering and Environmental Sciences, 29(1), 3-16.

Shahzad, U. (2015). Global warming: Causes, effects and solutions. Durreesamin Journal, 1(4), 1-7.

Shan, Y., Guan, D., Liu, J., Mi, Z., Liu, Z., Liu, J., Schroeder, H., Cai, B., Chen, Y. & Shao, S. (2017). Methodology and applications of city level CO2 emission accounts in China. Journal of Cleaner Production, 161, 1215-1225.

Sharma, S.S. (2011). Determinants of carbon dioxide emissions: empirical evidence from 69 countries. Applied Energy, 88(1), 376-382.

Udara Willhelm Abeydeera, L.H., Wadu Mesthrige, J. & Samarasinghalage, T.I. (2019). Global research on carbon emissions: a scientometric review. Sustainability, 11(14), 3972.



Download data is not yet available.