Sustainable acoustic insulation for prefabricated concrete homes in Andean zones

Main Article Content

Marcel Paredes
Fausto Lopez
Tito Castillo
Alexis Andrade
Valeria Arroba


Keywords : Andean zones, acoustic insulator, construction, manufactured home
Abstract
The construction sector is undoubtedly one of the main promoters for economic and social development. The modern concept of the prefabrication of elements originated from the industrial revolution to reduce costs and increase production through the mechanization of work, increasing the quality and ease of control in the plant. Prefabricated concrete homes are aimed at the popular sectors, however, when talking about acoustic habitability comfort we refer to constructive solutions used in a building to minimize the transmission of sounds (noise pollution) from outside or from an adjoining enclosure. This is achieved with the use of acoustic insulation materials. In the present research, through a bibliographic review, the updated state-of-the-art search methodology is developed, supported by the Delphi and AHP (hierarchical analytical process) methods and with the opinion of experts to compare the properties of acoustic insulating materials; in order to publicize the best acoustic insulators to be installed inside prefabricated concrete homes. Within the bibliographic review, new technologies with sustainable materials found as feasible prototypes were investigated in Ecuador, where thanks to its diversity of ecosystems and the necessary existing technology, the natural fibers used in the prototypes for insulation/absorption are easily found acoustics in homes.

Article Details

How to Cite
Paredes, M., Lopez, F., Castillo, T., Andrade, A., & Arroba, V. (2021). Sustainable acoustic insulation for prefabricated concrete homes in Andean zones. Scientific Review Engineering and Environmental Sciences, 30(3), 496–508. https://doi.org/10.22630/PNIKS.2021.30.3.42
References

pavements. Materials Today: Proceedings, 45(6), 5014-5022. https://doi.org/10.1016/j.matpr.2021.01.450

Banazadeh-Neishabouri, N. & Shirazi, S.A. (2021). Development of Erosion Equations for Fiberglass Reinforced Plastic (FRP). Wear, 203657. https://doi.org/10.1016/j.wear.2021.203657

Bao, J., Zou, D., Zhu, S., Ma, Q., Wang, Y. & Hu, Y. (2021). A medium-temperature, metalbased, microencapsulated phase change material with a void for thermal expansion. Chemical Engineering Journal, 415, 128965. https://doi.org/10.1016/j.cej.2021.128965

Cameselle-Molares, A., Vassilopoulos, A.P. & Keller, T. (2019). Two-dimensional quasi-static debonding in GFRP/balsa sandwich panels. Composite Structures, 215, 391-401. https:// doi.org/10.1016/j.compstruct.2019.02.077

Caner, H.I. & Aydin, C.C. (2021). Shipyard site selection by raster calculation method and AHP in GIS environment, İskenderun, Turkey. Marine Policy, 127, 104439. https://doi. org/10.1016/j.marpol.2021.104439

Cevallos, O.A., Jaramillo, D., Ávila, C. & Aldaz, X. (2017). Production and quality levels of construction materials in Andean regions: A case study of Chimborazo, Ecuador. Journal of Construction in Developing Countries, 22(1), 115-136. https://doi.org/10.21315/jcdc2017.22.1.7

Chandna, R., Saini, S. & Kumar, S. (2021). Fuzzy AHP based performance evaluation of massive online courses provider for online learners. Materials Today: Proceedings (in press). https://doi.org/10.1016/j.matpr.2021.02.255

Cheng, A., Lin, W.T. & Huang, R. (2011). Application of rock wool waste in cement-based composites. Materials and Design, 32(2), 636-642. https://doi.org/10.1016/j.matdes.2010.08.014

Cherradi, Y., Rosca, I.C., Cerbu, C., Kebir, H., Guendouz, A. & Benyoucef, M. (2021). Acoustic properties for composite materials based on alfa and wood fibers. Applied Acoustics, 174, 107759. https://doi.org/10.1016/j.apacoust.2020.107759

Dong, H.W., Zhao, S.D., Zhu, R., Wang, Y.S., Cheng, L. & Zhang, C. (2021). Customizing acoustic dirac cones and topological insulators in square lattices by topology optimization. Journal of Sound and Vibration, 493, 115687. https://doi.org/10.1016/j.jsv.2020.115687

Escobar, A. (2019). Habitability and design: Radical interdependence and the re-earthing of cities. Geoforum, 101, 132-140. https://doi.org/10.1016/j.geoforum.2019.02.015

García-Ruiz, M.E. & Lena-Acebo, F.J. (2018). Aplicación del metodo delphi en el diseńo de una investigación cuantitativa sobre el fenómeno FABLAB [Application of the delphi method in the design of a quantitative investigation on the FABLABS]. Empiria. Revista de Metodología de Ciencias Sociales, 40, 129-166. https://doi.org/10.5944/empiria.40.2018.22014

Ghofrani, M., Ashori, A., Rezvani, M.H. & Arbabi Ghamsari, F. (2016). Acoustical properties of plywood/waste tire rubber composite panels. Measurement: Journal of the International Measurement Confederation, 94, 382-387. https://doi.org/10.1016/j.measurement.2016.08.020

Guevara Patiño, R. (2016). Estado del arte de lectura del contexto [The state of the art as a research technique: knowledge analysis or quest for new meanings]. Folios, 44(2), 165-179.

He, D., Huang, D. & Jiang, D. (2021). Modeling and studies of fracture in functionally graded materials under thermal shock loading using peridynamics. Theoretical and Applied Fracture Mechanics, 111, 102852. https://doi.org/10.1016/j.tafmec.2020.102852

José, F., Vidal, L. & Lluch, A.C. (2019). Diseño y validación mediante Método Delphi de un cuestionario para conocer las características de la actividad física en personas mayores que viven en residencias [Delphy Method validation and design of a questionnaire to assess physical activity]. Retos, 2041(36), 515-520.

Kim, T., Kim, Y. & Cho, H. (2020). Dynamic production scheduling model under due date uncertainty in precast concrete construction. Journal of Cleaner Production, 257, 120527. https://doi.org/10.1016/j.jclepro.2020.120527

Kuranchie, C., Yaya, A. & Bensah, Y.D. (2021). The effect of natural fibre reinforcement on polyurethane composite foams – a review. Scientific African, 11, e00722. https://doi.org/10.1016/j.sciaf.2021.e00722

Lin, C. & Kou, G. (2021). A heuristic method to rank the alternatives in the AHP synthesis. Applied Soft Computing, 100, 106916. https://doi.org/10.1016/j.asoc.2020.106916

Liu, Y., Cao, Z., Wang, Y., Wang, D. & Liu, J. (2021). Experimental study of hygro-thermal characteristics of novel cement-cork mortars. Construction and Building Materials, 271, 121901. https://doi.org/10.1016/j.conbuildm at.2020.121901

Narváez, G. & León, G. (2001). Caracterización y zonificación climática de la región Andina [Characterization and climatic zoning of the Andean region]. Meteorología Colombiana, 4, 121-126.

Nishimura, T. (2015). Chipboard, oriented strand board (OSB) and structural composite lumber. In Wood Composites (pp. 103-121). Cambridge (UK): Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-454-3.00006-8

Obaco, M., Royuela, V. & Matano, A. (2020). On the link between material deprivation and city size: Ecuador as a case study. Land Use Policy, 104761 (in press). https://doi.org/10.1016/j.landusepol.2020.104761

Opydo, W. (2004). Study of elastic waves of acoustic frequencies generated by surface partial discharges of solid insulators in vacuum. Vacuum, 74(1), 85-92. https://doi.org/10.1016/j.vacuum.2003.12.159

Piuzzi, G.P., Scheuermann Filho, H.C., Villena Del Carpio, J.A. & Consoli, N.C. (2021). The effects of porosity, asphalt content and fiberglass incorporation on the tensile strength and resilient modulus of asphalt concrete blends. Geotextiles and Geomembranes, 49(3), 864-870. https://doi.org/10.1016/j.geotexmem.2021.01.002

Plessis, A. du, Babafemi, A.J., Paul, S.C., Panda, B., Tran, J.P. & Broeckhoven, C. (2021). Biomimicry for 3D concrete printing: a review and perspective. Additive Manufacturing, 38, 101823. https://doi.org/10.1016/j.addma.2020.101823

Quiñones-Bolaños, E., Gómez-Oviedo, M., Mouthon-Bello, J., Sierra-Vitola, L., Berardi, U. & Bustillo-Lecompte, C. (2021). Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. Journal of Environmental Management, 277, 111503. https://doi.org/10.1016/j.jenvman.2020.111503

Rajeshkumar, V., Anandaraj, S., Kavinkumar, V. & Elango, K.S. (2020). Analysis of factors influencing formwork material selection in construction buildings. Materials Today: Proceedings, 37(2), 880-885. https://doi.org/10.1016/j.matpr.2020.06.044

Ranaivomanana, H. & Leklou, N. (2021). Investigation of microstructural and mechanical properties of partially hydrated Asbestos-Free fiber cement waste (AFFC) based concretes: experimental study and predictive modeling. Construction and Building Materials, 277, 121943. https://doi.org/10.1016/j.conbuildm at.2020.121943

Sato, H., Kurisu, K., Morimoto, M. & Maeda, M. (2021). Effects of rainfall rate on physical characteristics of outdoor noise from the viewpoint of outdoor acoustic mass notification system. Applied Acoustics, 172, 107616. https://doi.org/10.1016/j.apacoust.2020.107616

Sivakandhan, C., Murali, G., Tamiloli, N. & Ravikumar, L. (2020). Studies on mechanical properties of sisal and jute fiber hybrid sandwich composite. Materials Today: Proceedings, 21, 404-407. https://doi.org/10.1016/j.matpr.2019.06.374

Sreenivasan, S., Sulaiman, S., Ariffin, M.K.A.M., Baharudin, B.T.H.T. & Abdan, K. (2018). Physical properties of Novel Kenaf Short Fiber Reinforced Bulk Molding Compounds (BMC) for Compression Moulding. In Materials Today: Proceedings, 5, 1226-1232. https://doi.org/10.1016/j.matpr.2017.11.205

Suonox (2019). Audiglue, silence the noise. Monterrey (Mexico): Suonox.

Taban, E., Khavanin, A., Ohadi, A., Putra, A., Jafari, A.J., Faridan, M. & Soleimanian, A. (2019). Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment, 161, 106274. https://doi.org/10.1016/j.buildenv.2019.106274

Tang, N., Lei, D., Huang, D. & Xiao, R. (2019). Mechanical performance of polystyrene foam (EPS): Experimental and numerical analysis. Polymer Testing, 73, 359-365. https://doi. org/10.1016/j.polymertesting.2018.12.001

Torres, F.G. & Aragon, C.L. (2006). Final product testing of rotational moulded natural fibre-reinforced polyethylene. Polymer Testing, 25(4), 568-577. https://doi.org/10.1016/j.polymertesting.2006.03.010

Yuan, J.M., Feng, Y.R., Wu, Z.J., Wang, Y.J., Li, S.Y. & Sun, P. (2017). A carbon fiber network/polypropylene composite with a low thermal expansion coefficient and high stiffness. Xinxing Tan Cailiao/New Carbon Materials, 32(3), 271-276. https://doi.org/10.1016/j.carbon.2017.06.069

Statistics

Downloads

Download data is not yet available.
Recommend Articles