Determining NO2 immission levels in a conflicted area: Riobamba, Ecuador

Main Article Content

M. Peredes
R. Viteri
D. Auqui
D. Idrovo


Keywords : emissions, pedestrian flow, traffic fl ow, nitrogen oxides, environmental liabilities
Abstract

Determining NO2 immission levels in a confl icted area: Riobamba, Ecuador. Ri-obamba has areas with high vehicular infl u-ence. For the determination of nitrogen dioxide concentrations, passive samplers were used, which were placed at points throughout the do-main. The concentrations obtained in the fi eld were interpolated with the information gener-ated with the model traffi c emissions software, estimating the relationship between vehicular traffi c and the presence of gas. Allow to know the amount of pollutants that breathe about 250 pedestrians on average in the area.

Article Details

How to Cite
Peredes, M., Viteri, R., Auqui, D., & Idrovo, D. (2019). Determining NO2 immission levels in a conflicted area: Riobamba, Ecuador. Scientific Review Engineering and Environmental Studies (SREES), 28(3), 465–475. https://doi.org/10.22630/PNIKS.2019.28.3.43
References

Bahmankhah, B. & Coelho, M.C. (2017). Multi-objective optimization for short distance trips in an urban area: choosing between motor vehicle or cycling mobility for a safe, smooth and less polluted route. Transportation Research Procedia, 27, 428-435. https://doi.org/10.1016/J.TRPRO.2017.12.009

Borge, R., Narros, A., Artíñano, B., Yagüe, C., Gómez-Moreno, F.J., de la Paz, D., … Vardoulakis, S. (2016). Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign. Atmospheric Environment, 140, 432-445. https://doi.org/10.1016/J.ATMOSENV.2016.06.020

Borge, R., Quaassdorff, C., Paz, D. de la, Narros, A., Paredes, M. & Andres, J. de. (2015). Experimental Campaing in a Heavily Trafficked Roundabout in Madrid for the Assessment of Air Quaity Monitoring Station Representativeness in Terms of Population Exposure to NO2. In 2nd Healthy Polis Workshop – during Kunshan Forum. Retrieved from https://www.researchgate.net/publication/315078458_ Experimental_Campaign_in_a_Heavily_ Traffi cked_Roundabout_in_Madrid_for_the_ Assessment_of_Air_Quality_Monitoring_ Station_Representativeness_in_Terms_of_Population_Exposure_to_NO2

Chen, H., Xie, B., Ma, J. & Chen, Y. (2018). NOx emission of biodiesel compared to diesel: Higher or lower? Applied Thermal Engineering, 137, 584-593. https://doi.org/10.1016/J.APPLTHERMALENG.2018.04.022

El Morabet, R. (2019). Effects of Outdoor Air Pollution on Human Health. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.11012-7

Glarborg, P., Miller, J.A., Ruscic, B. & Klippenstein, S.J. (2018). Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 67, 31-68. https://doi.org/10.1016/J.PECS.2018.01.002

Grundström, M., Hak, C., Chen, D., Hallquist, M. & Pleijel, H. (2015). Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air – Relationships with wind speed, vertical temperature gradient and weather type. Atmospheric Environment, 120, 317-327. https://doi.org/10.1016/J.ATMOSENV.2015.08.057

Guo, X., Fu, L., Ji, M., Lang, J., Chen, D. & Cheng, S. (2016). Scenario analysis to vehicular emission reduction in Beijing-Tianjin-Hebei (BTH) region, China. Environmental Pollution, 216, 470-479. https://doi.org/10.1016/J.ENVPOL.2016.05.082

Jaikumar, R., Shiva Nagendra, S.M. & Sivanandan, R. (2017). Modal analysis of real-time, real world vehicular exhaust emissions under heterogeneous traffic conditions. Transportation Research Part D: Transport and Environment, 54, 397-409. https://doi.org/10.1016/J.TRD.2017.06.015

Ji, Y., Bai, S. & Crocker, M. (2015). Al2O3-based passive NOx adsorbers for low temperature applications. Applied Catalysis B: Environmental, 170-171, 283-292. https://doi.org/10.1016/J.APCATB.2015.01.025

Kumar, M., Tsujimura, T. & Suzuki, Y. (2018). NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine. Energy, 145, 496-506. https://doi.org/10.1016/j.energy.2017.12.148

Li, P-W., Chyang, C-S. & Ni, H-W. (2018). An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion. Energy, 154, 319-327. https://doi.org/10.1016/J.ENERGY.2018.04.141

Margreiter, M., Krause, S., Twaddle, H. & Lüßmann, J. (2014). Evaluation of Environmental Impacts of Adaptive Network Signal Controls Based on Real Vehicle Trajectories. Transportation Research Procedia, 4, 421-430. https://doi.org/10.1016/J.TRPRO.2014.11.032

Mishra, D. & Goyal, P. (2014). Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India. Atmospheric Environment, 98, 1-7. https://doi.org/10.1016/j.atmosenv.2014.08.047

Nakashima, Y., Sadanaga, Y., Saito, S., Hoshi, J. & Ueno, H. (2017). Contributions of vehicular emissions and secondary formation to nitrous acid concentrations in ambient urban air in Tokyo in the winter. Science of The Total Environment, 592, 178-186. https://doi.org/10.1016/J.SCITOTENV.2017.03.122

Nhung, N.T.T., Schindler, C., Dien, T.M., Probst-Hensch, N., Perez, L. & Künzli, N. (2018). Acute effects of ambient air pollution on lower respiratory infections in Hanoi children: An eight-year time series study. Environment International, 110, 139-148. https://doi.org/10.1016/J.ENVINT.2017.10.024

Park, S. & Hwang, K. (2017). Experimental Analysis on control constraints for connected vehicles using Vissim. Transportation Research Procedia, 21, 269-280. https://doi.org/10.1016/J.TRPRO.2017.03.097

Rahmati, M.H. & Yousefi , S.R. (2013). Demand estimation for the Iranian automobile industry. The Quarterly Review of Economics and Finance, 53(3), 277-284. https://doi.org/10.1016/J.QREF.2011.03.001

Sadat, M. (2017). Simulation-based Variable Speed Limit Systems Modelling: An Overview and A Case Study on Istanbul Freeways. Transportation Research Procedia, 22, 607-614. https://doi.org/10.1016/J.TRPRO.2017.03.051

Sanchez, B., Santiago, J.L., Martilli, A., Martin, F., Borge, R., Quaassdorff, C. & de la Paz, D. (2017). Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model. Atmospheric Environment, 163, 155-165. https://doi.org/10.1016/J.ATMOSENV.2017.05.022

Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S-H., Mortimer, K., … Wuebbles, D.J. (2019). Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest, 155(2), 409-416. https://doi.org/10.1016/J.CHEST.2018.10.042

Tang, G., Chao, N., Wang, Y. & Chen, J. (2016). Vehicular emissions in China in 2006 and 2010. Journal of Environmental Sciences, 48, 179-192. https://doi.org/10.1016/J.JES.2016.01.031

Villanueva, M. & Dosal, M,. (2008). Calibration curves in analytical methods. Introduction to Chemical Metrology, 18-26.

World Health Organization [WHO] (2018). Ambient (outdoor) air quality and health.

Yao, Z., Wu, B., Wu, Y., Cao, X. & Jiang, X. (2015). Comparison of NOx emissions from China III and China IV in-use diesel trucks based on on-road measurements. Atmospheric Environment, 123, 1-8. https://doi.org/10.1016/J.ATMOSENV.2015.10.056

Statistics

Downloads

Download data is not yet available.
Recommend Articles