The impact of utilizing red brick powder and plastic pellets as fine particles on the compressive strength and absorption of water in paving blocks

Main Article Content

Fendi Hary Yanto


Keywords : compressive strength, paving block, plastic pellets, red brick powder, water absorption
Abstract

The construction industry faces increasing pressure to reduce its environmental impact. Traditional paving block production often relies on non-renewable materials and contributes to waste generation. The need for sustainable and durable paving block alternatives is evident. This study investigated the potential of incorporating waste red brick powder and polypropylene (PP) plastic pellets as a fine aggregate in paving block production. Various formulations were tested, with varying percentages of these materials. The resulting paving blocks’ compressive strength and water absorption were evaluated against SNI 03-0691-1996 standards. The results indicate that the innovative paving block formulation incorporating 25% plastic pellets and 25% red brick powder achieved a maximum compressive strength of 12.19 MPa. In comparison, a mixture containing 15% plastic pellets and 25% red brick powder exhibited a minimum compressive strength of 3.08 MPa. The average water absorption for all formulations was 14.80%. These findings highlight the potential of waste materials as viable alternatives in construction, promoting a more sustainable approach to urban infrastructure.

Article Details

How to Cite
Hary Yanto, F. (2024). The impact of utilizing red brick powder and plastic pellets as fine particles on the compressive strength and absorption of water in paving blocks. Scientific Review Engineering and Environmental Sciences (SREES), 1–14. https://doi.org/10.22630/srees.9917
References

Ahmad, S., Dawood, O., Lashin, M. M. A., Khattak, S. U., Javed, M. F., Aslam, F., Khan, M. I., Elkotb, M. A., & Alaboud, T. M. (2023). Effect of coconut fiber on low-density polyethylene plastic-sand paver blocks. Ain Shams Engineering Journal, 14 (8), 101982. https://doi.org/10.1016/j.asej.2022.101982 (Crossref)

Arulrajah, A., Yaghoubi, E., Wong, Y., & Horpibulsuk, S. (2017). Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics. Construction and Building Materials, 147, 639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.178 (Crossref)

Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330 (Crossref)

Berney, E. S., & Smith, D. M. (2008). Mechanical and physical properties of ASTM C33 sand. U.S. Army Corps of Engineers.

Candra, A. I., Romadhon, F., Azhari, F. M., & Hidiyati, E. F. (2022). Increasing compressive strength of the red brick with fly ash and rice husk ash. Jurnal Teknik Sipil dan Perencanaan, 24 (2), 107–117. https://doi.org/10.15294/jtsp.v24i2.35855 (Crossref)

Dadzie, D., Kaliluthin, A., & Kumar, D. (2020). Exploration of Waste Plastic Bottles Use in Construction. Civil Engineering Journal, 6 (11), 2262–2272. https://doi.org/10.28991/cej-2020-03091616 (Crossref)

Dary, R. W., Oktaviani, T., Putri, W. N., & Putra, H. (2024). Effect of compressive strength of red brick with the aaddition of carrageenan. International Journal of Research in Vocational Studies (IJRVOCAS), 3 (4), 144–149. https://doi.org/10.53893/ijrvocas.v3i4.82 (Crossref)

Folorunsho, O. W., Suleiman, T. M., Amadi, A. N., Hassan, A., & Hakeem, O. A. (2023). Comparative studies on the compressive strength of pavement blocks made from different geological materials with plastic waste additives and cement pavement for use in road construction. Fudma Journal of Sciences, 7 (6), 191–199. https://doi.org/10.33003/fjs-2023-0706-2185 (Crossref)

Garcia, N., Molina, D., Torres, Y., & de Almeida, L. (2023). The proposes for the use of the cleaner production tool (P+L) in the hope plastic solid waste recycling process. Angolan Industry and Chemical Engineering Journal, 3 (3), 29–36. https://www.aincej.com.angolaonline.net/index.php/home/article/view/21/12

Gopinath, M., Abimaniu, P., Dharsan Rishi, C., Pravinkumar, K., & Tejeshwar, P. G. (2023). Experimental investigation on waste plastic fibre concrete with partial replacement of coarse aggregate by recycled coarse aggregate. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.573 (Crossref)

Gour, M., Sharma, S., Garg, N., Das, S., & Kumar, S. (2022). Utilization of Plastic Waste as a Partial Replacement of Coarse Aggregates in Concrete. IOP Conference Series: Earth and Environmental Science, 1086 (1), 12047. https://doi.org/10.1088/1755-1315/1086/1/012047 (Crossref)

Guo, Z., Sun, Q., Zhou, L., Jiang, T., Dong, C., & Zhang, Q. (2024). Mechanical properties, durability and life-cycle assessment of waste plastic fiber reinforced sustainable recycled aggregate self-compacting concrete. Journal of Building Engineering, 91, 109683. https://doi.org/10.1016/j.jobe.2024.109683 (Crossref)

Haigh, R. (2024). The mechanical behaviour of waste plastic milk bottle fibres with surface modification using silica fume to supplement 10% cement in concrete materials. Construction and Building Materials, 416, 135215. https://doi.org/10.1016/j.conbuildmat.2024.135215 (Crossref)

Handayasari, I. (2017). Studi Alternatif Bahan Konstruksi Ramah Lingkungan Dengan Pemanfaatan Limbah Plastik Kemasan Air Mineral Pada Campuran Beton. Poli-Teknologi, 16 (1), 159366. https://doi.org/10.32722/pt.v16i1.865 (Crossref)

Iduwin, T., Hadiwardoyo, S. P., Rifai, A. I., & Lumingkewas, R. H. (2023). Contribution of Plastic Waste in Recycles Concrete Aggregate Paving Block. Journal of Advanced Research in Applied Mechanics, 110 (1), 1–10. https://doi.org/10.37934/aram.110.1.110 (Crossref)

Junkes, V. H., Fuziki, M. E. K., Tusset, A. M., Rodrigues, P. H., & Lenzi, G. G. (2024). Environmentally friendly concrete block production: valorization of civil construction and chemical industry waste. Environmental Science and Pollution Research, 31 (12), 17788–17803. https://doi.org/10.1007/s11356-023-31706-y (Crossref)

Kakerissa, Y., & Latuheru, R. (2023). Utilization of plastic waste as a substitutional material for paving block manufacturing. Engineering and Technology Journal, 8 (3). https://doi.org/10.47191/etj/v8i3.07 (Crossref)

Khatib, J., Jahami, A., Elkordi, A., & Baalbaki, O. (2019). Structural performance of reinforced concrete beams containing plastic waste caps. Magazine of Civil Engineering, 7 (91), 73–79. https://doi.org/10.18720/MCE.91.7 (Crossref)

Krasna, W., Noor, R., & Ramadani, D. (2019). Utilization of plastic waste polyethylene terephthalate (PET) as a coarse aggregate alternative in paving block. MATEC Web of Conferences, 280, 4007. https://doi.org/10.1051/matecconf/201928004007 (Crossref)

Muzaidi, I., Anggarini, E., & Hardiani, D. (2022). Solidifikasi Struktur Tanah Lempung Lunak Banjarmasin Dengan Limbah Plastik Pet (Polyethylene Terephthalate). EXTRAPOLASI, 19, 1–8. https://doi.org/10.30996/ep.v19i01.5520 (Crossref)

National Standardization Agency [NSA], (1996). Paving block (SNI 03-0691-1996). National Standardization Agency. https://spada.uns.ac.id/pluginfile.php/110917/mod_resource/content/1/sni-03-0691-1996-paving-block.pdf

National Standardization Agency [NSA], (2012). Procedures for selecting mixtures for normal concrete, heavy concrete and mass concrete (SNI 7656:2012). National Standardization Agency. https://app.box.com/s/efw1el9wf9l79bnryqpq7sujoht816ok

Paikun, P., Amdani, S. A., Susanto, D. A., & Saepurrahman, D. (2023). Analysis of the compressive strength of concrete from brick wall waste as a concrete mixture. ASTONJADRO, 12 (1), 150–162. https://doi.org/10.32832/astonjadro.v12i1.8145 (Crossref)

Saxena, R., Gupta, T., Sharma, R. K., Chaudhary, S., & Jain, A. (2020). Assessment of mechanical and durability properties of concrete containing PET waste. Scientia Iranica, 27 (1), 1–9. https://doi.org/10.24200/SCI.2018.20334 (Crossref)

Silva, W. B. C., Barroso, S. H. A., Cabral, A. E. B., Stefanutti, R., & Picado-Santos, L. G. (2023). Assessment of concrete road paving blocks with coal bottom ash: physical and mechanical characterization. Case Studies in Construction Materials, 18, e02094. https://doi.org/10.1016/j.cscm.2023.e02094 (Crossref)

Soni, A., Rajput, T., Sahu, K., & Rajak, S. (2022). Utilization of waste plastic in manufacturing of paver blocks. International Journal for Research in Applied Science and Engineering Technology, 10 (2), 939–942. https://doi.org/10.22214/ijraset.2022.40410 (Crossref)

Taylor, M. (2004). Proposed changes to ASTM C33. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d556f92f31a600f2442ddbfc4a378f32611c835d

Tempa, K., Chettri, N., Thapa, G., Phurba, Gyeltshen, C., Norbu, D., Gurung, D., & Wangchuk, U. (2022). An experimental study and sustainability assessment of plastic waste as a binding material for producing economical cement-less paver blocks. Engineering Science and Technology, an International Journal, 26, 101008. https://doi.org/10.1016/j.jestch.2021.05.012 (Crossref)

Umar, M. Z., & Mustafa, A. F. (2023). The performance optimization of concrete bricks using a sagu fiber. SINERGI, 27 (1), 7–14. https://doi.org/10.2241/sinergi.2023.1.002 (Crossref)

Wendimu, T. B., Furgasa, B. N., & Hajji, B. M. (2021). Suitability and utilization study on waste plastic brick as alternative construction material. Journal of Civil, Construction and Environmental Engineering, 6 (1), 9–12. https://doi:10.11648/j.jccee.20210601.12 (Crossref)

Widiyono, A., Saputro, Y. A., Pambudi, F. B. S., Hermawan, A. B. B. H., & Mahardika, M. A. (2024). Assistance in utilization of plastic waste through eco-paving blocks at Adiwiyata Elementary School, Demak Regency. Warta Pengabdian Andalas, 31 (2), 368–376. https://doi.org/10.25077/jwa.31.2.368-376.2024 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles